springboot2.5.6整合shardingsphere sharding-jdbc4.1.1

场景:分表不分库,按月份分表

1.导包

 			<dependency>
                <groupId>org.apache.shardingsphere</groupId>
                <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
                <version>4.1.1</version>
            </dependency>

2.编写配置文件

spring:
  main:
    allow-bean-definition-overriding: true
  shardingsphere:
    # 参数配置,显示sql
    props:
      sql:
        show: false
    # 配置数据源
    datasource:
      # 给每个数据源取别名,下面的ds0,ds1任意取名字
      names: ds0
      # 给master-ds1每个数据源配置数据库连接信息
      ds0:
        # 配置druid数据源
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/cloud?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
        username: root
        password: 123456
        # 下面为连接池的补充设置,应用到上面所有数据源中
        # 初始化大小,最小,最大
        initial-size: 5
        # 最小连接池数量
        min-idle: 5
        # 最大连接池数量
        max-active: 300
        # 配置获取连接等待超时的时间
        max-wait: 5000
        #申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。
        test-while-idle: true
        #既作为检测的间隔时间又作为testWhileIdel执行的依据
        time-between-eviction-runs-millis: 60000
        #销毁线程时检测当前连接的最后活动时间和当前时间差大于该值时,关闭当前连接
        min-evictable-idle-time-millis: 30000
        #用来检测连接是否有效的sql 必须是一个查询语句
        #mssql中为 select 1
        #mysql中为 select 'x'
        #oracle中为 select 1 from dual
        validation-query: select 1
        #申请连接时会执行validationQuery检测连接是否有效,开启会降低性能,默认为true
        test-on-borrow: false
        #归还连接时会执行validationQuery检测连接是否有效,开启会降低性能,默认为true
        test-on-return: false
        #当数据库抛出不可恢复的异常时,抛弃该连接
        #exception-sorter: true
        #是否缓存preparedStatement,mysql5.5+建议开启
        pool-prepared-statements: true
        #当值大于0时poolPreparedStatements会自动修改为true
        max-pool-prepared-statement-per-connection-size: 20
        #配置扩展插件
        #配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
        filters: stat,wall,slf4j
        #通过connectProperties属性来打开mergeSql功能;慢SQL记录
        connection-properties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
        #合并多个DruidDataSource的监控数据
        use-global-data-source-stat: true
        #设置访问druid监控页(访问地址http://localhost:port/druid/login.html)的账号和密码,默认没有
        stat-view-servlet:
          login-username: admin
          login-password: admin
          enabled: true
        #开启web filter
        web-stat-filter:
          enabled: true
    # 配置默认数据源ds0
    sharding:
      # 默认数据源
      default-data-source-name: ds0
      # 配置分表的规则
      tables:
        #   逻辑表名(需要分表的表)
        septic_tank:
          # 数据节点:数据源$->{0..N}.逻辑表名$->{0..N}
          actual-data-nodes: ds0.septic_tank_$->{2022}${(1..12).collect{t ->t.toString().padLeft(2,'0')} }
          key-generator:
            column: id
            type: SNOWFLAKE #雪花id
          # 分表策略,同分库策略
          table-strategy:
            standard:
              shardingColumn: create_time
              precise-algorithm-class-name: com.central.internet.config.shardingsphere.ModuloShardingDatabaseAlgorithm
              range-algorithm-class-name: com.central.internet.config.shardingsphere.StatTimeRangeShardingAlgorithm
   

3.自定义分表规则

ModuloShardingDatabaseAlgorithm

import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import org.springframework.stereotype.Component;

import java.time.LocalDateTime;
import java.util.Collection;

@Slf4j
@Component
public class ModuloShardingDatabaseAlgorithm implements PreciseShardingAlgorithm<String>{

    private int ModeID=1000;//默认取值范围。如果只设置了>20000没有设置 最大值,此时默认设置一个最大值:最小值+1000。反之设置了最大值,没有设置最小值,就是最大值-1000

    private static final String SPLITTER = "_";

    @Override
    public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) {

        String month = "";
        int monthValue = LocalDateTime.now().getMonth().getValue();
        if (monthValue < 10) {
            month = "0" + monthValue;
        } else {
            month = monthValue + "";
        }
        String tbName = shardingValue.getLogicTableName() + SPLITTER + LocalDateTime.now().getYear() + month;
        log.info("shardingsphere表名:{}", tbName);
        return tbName;
    }
}

StatTimeRangeShardingAlgorithm

package com.central.internet.config.shardingsphere;

import org.apache.commons.compress.utils.Lists;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingValue;
import org.springframework.stereotype.Component;

import java.time.LocalDate;
import java.time.LocalDateTime;
import java.util.Date;
import java.time.format.DateTimeFormatter;
import java.util.Collection;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Set;

/**
 * @description:
 * @author: wangql
 * @create: 2022-04-01 10:03
 **/
@Component
public class StatTimeRangeShardingAlgorithm implements RangeShardingAlgorithm<String> {
	
	
	/**
	 * 不支持between and处理
	 * @author: wangql
	 * @create: 2022-04-01 10:03
	 **/
    @Override
    public Collection<String> doSharding(Collection<String> tableNames, RangeShardingValue<String> rangeShardingValue) {
        Set<String> result = new LinkedHashSet<>();

        DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

        // between and 的起始值
        LocalDateTime lower = LocalDateTime.parse(rangeShardingValue.getValueRange().lowerEndpoint(),formatter);
        LocalDateTime upper = LocalDateTime.parse(rangeShardingValue.getValueRange().upperEndpoint(),formatter);

        //获取时间列表
        //补充说明:其实tableNames中的值就是配置文件中的actual-data-nodes中配置的所有表,此处返回的是要进行查询的表
        List<String> timeList = packDateStrListByInterval(lower.toLocalDate(),upper.toLocalDate());
        // 循环范围计算分表逻辑
        for(String time : timeList){
            for(String tableName : tableNames){
                if(tableName.endsWith(time)){
                    result.add(tableName);
                }
            }
        }
        return result;
    }
	
    private List<String> packDateStrListByInterval(LocalDate startDate, LocalDate endDate) {
        List<String> list = Lists.newArrayList();
        if (endDate.isBefore(startDate)) {
            return list;
        }

        LocalDate tmp = startDate;
        list.add(tmp.format(DateTimeFormatter.ofPattern("yyyyMM")));
        while (true) {
            tmp = tmp.plusMonths(1);
            if (endDate.isBefore(tmp)) {
                break;
            }
            list.add(tmp.format(DateTimeFormatter.ofPattern("yyyyMM")));
        }

        return list;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值