题目:
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10^4) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
代码:
#include <stdio.h>
void sort(char *p) {//排序
int i,j,t;
for ( i=0;i<4;i++ ) {
for ( j=0;j<3-i;j++ ) {
if ( *(p+j)<*(p+j+1) ) {
t = *(p+j);
*(p+j) = *(p+j+1);
*(p+j+1) = t;
}
}
}
}
int main()
{
char a[5];
int i,j,t,num = 0;
int b,c;
for ( i=0;i<4;i++ ) scanf("%c",&a[i]);//将四位数当作字符输入
while ( num!=6174 ) {
char *p = &a[0];
sort(p);
b = (a[0]-'0')*1000+(a[1]-'0')*100+(a[2]-'0')*10+(a[3]-'0');
c = (a[3]-'0')*1000+(a[2]-'0')*100+(a[1]-'0')*10+(a[0]-'0');
num = b-c;
if ( a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3] ) {
printf("%d - %d = 0000",b,c);
break;
} else {
printf("%d - %04d = %d\n",b,c,num);
j = 3;
t = num;
while ( j>=0 ) {
a[j] = t%10+'0';
t /= 10;
j --;
}
}
}
return 0;
}