深度学习环境搭建anaconda+pycharm+pytorch

这篇博客介绍了如何搭建深度学习环境,包括显卡、驱动和CUDA的介绍,详细讲解了Anaconda的下载安装、创建PyTorch虚拟环境以及PyCharm的配置。博主提供了解决下载速度慢的方法,并指导如何在PyCharm中使用新环境进行代码测试。
摘要由CSDN通过智能技术生成


本文将详细介绍一下如何搭建深度学习所需要的实验环境.
这个框架分为以下六个模块

在这里插入图片描述

显卡

简单理解这个就是我们常说的GPU,显卡的功能是一个专门做矩阵运算的部件,用于显示方面的运算,现在神经网络中绝大操作都是对矩阵的运算,所以我们当然可以将显卡的矩阵运算功能应用起来,来提高计算速度.

驱动

通常指NVIDIA Driver,其实它就是一个驱动软件,而前面的显卡就是硬件

cuda

cuda是一个扩展包,能够使得使用GPU进行通用计算变得简单和优雅,它本质上是一套指令集,我们通过这个指令集来使用显卡的矩阵运算操作;

Q:如何查看显卡支持的cuda的最高版本?

在这里插入图片描述
在这里插入图片描述

anaconda

1. 下载安装

下载官网:https://www.anaconda.com/
在这里插入图片描述
选择与系统位数对应的安装包下载即可。
在这里插入图片描述
Anaconda占用空间较大,建议选择一个空闲的磁盘专门用来放Anaconda。
在这里插入图片描述
勾选添加环境变量
在这里插入图片描述

2. 安装pytorch虚拟环境

  1. 创建一个虚拟环境:conda create -n torch(虚拟环境名) python = 3.7

在这里插入图片描述
此步骤 若出现以下情况:
在这里插入图片描述
解决方法:
在创建新的虚拟环境前先输入以下命令。

conda config --add channels conda-forge
conda config --set channel_priority strict
conda config --s
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值