期望、方差、协方差与相关系数

期望、方差、协方差与相关系数

期望

定义: 设离散型变量 X X X 的分布律为
P { X = x k } = p k , k = 1 , 2 , ⋯   . P\{ X = {x_k}\} = {p_k},\begin{array}{c} {}&{k = 1,2, \cdots .} \end{array} P{X=xk}=pk,k=1,2,.
随机变量 X X X 的数学期望为
E ( X ) = ∑ k = 1 ∞ x k p k E(X) = \sum\limits_{k = 1}^\infty {{x_k}{p_k}} E(X)=k=1xkpk
设连续型随机变量 X X X 的概率密度为 f ( x ) f(x) f(x) X X X 的数学期望为
E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X) = \int_{ - \infty }^\infty {xf(x)dx} E(X)=xf(x)dx
一般的期望也称均值,但是二者有不同。

期望和均值的不同?

期望 是一个概率论概念,均值是一个统计学概念。

均值是实验后根据实际结果统计得到的样本的平均值,期望是实验前根据概率分布来预测样本的均值。所以可以说期望是均值随样本趋于无穷的极限。

方差

方差用来度量随机变量 X X X 与均值 E ( X ) E(X) E(X) 的偏离程度。

定义: X X X 是一个随机变量,若 E { [ X − E ( X ) ] 2 } E\{ {[X - E(X)]^2}\} E{[XE(X)]2} 存在, 则称 E { [ X − E ( X ) ] 2 } E\{ {[X - E(X)]^2}\} E{[XE(X)]2} X X X 的方差,记为 D ( X ) D(X) D(X) 或 Var(X),即
D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } {\rm{D(X) = Var(X) = }}E\{ {[X - E(X)]^2}\} D(X)=Var(X)=E{[XE(X)]2}
引入 D ( X ) \sqrt {{\rm{D(X)}}} D(X) ,记为 σ ( X ) \sigma (X) σ(X),称为标准差或者均方差。

离散型随机变量:
D ( X ) = ∑ k = 1 ∞ [ x − E ( X ) ] 2 p k {\rm{D(X) = }}\sum\limits_{k = 1}^\infty {{{[x - E(X)]}^2}{p_k}} D(X)=k=1[xE(X)]2pk
其中 p k p_k pk X X X 的分布律

连续型随机变量:
D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) ] 2 f ( x ) d x {\rm{D(X) = }}\int_{ - \infty }^\infty {{{[x - E(X)]}^2}f(x)dx} D(X)=[xE(X)]2f(x)dx
f ( x ) f(x) f(x) X X X 的概率密度。

随机变量 X X X 的方差可以用下面的公式计算:
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X) = E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2

协方差与相关系数

定义: E { [ X − E ( X ) ] [ Y − E ( Y ) ] } E\{ [X - E(X)][Y - E(Y)]\} E{[XE(X)][YE(Y)]} 称为随机变量 X X X Y Y Y 的协方差,记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y) 即:
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y) = E\{ [X - E(X)][Y - E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}

ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) {\rho _{XY}} = \frac{{Cov(X,Y)}}{{\sqrt {{\rm{D(X)}}} \sqrt {{\rm{D(Y)}}} }} ρXY=D(X) D(Y) Cov(X,Y)
称为随机变量 X X X Y Y Y 的相关系数。

协方差可以用于衡量数据直接的相关性,设有数据 X X X 和 数据 Y Y Y, 通过计算二者的协方差可以有下面的三种情况:

  • C o v ( X , Y ) > 0 Cov(X,Y) > 0 Cov(X,Y)>0 时, X X X Y Y Y 正相关,即两者有同时增加或者减少的倾向
  • C o v ( X , Y ) < 0 Cov(X,Y) < 0 Cov(X,Y)<0 时, X X X Y Y Y 正相关,即两者有反向增加或者减少的倾向
  • C o v ( X , Y ) = 0 Cov(X,Y) = 0 Cov(X,Y)=0 时, X X X Y Y Y 不相关

那么相关系数又是干嘛的呢,假如我们有身高、体重、年龄这三组数据,我们想比较一下到底是身高与体重的相关性大,还是年龄与体重的相关性大?那我们计算身高、体重会有一个单位(厘米.公斤)的度量,计算年龄、体重也会有一个单位(岁.公斤)度量,这样的话单位不统一就没有评价的标准。通过计算他们的相关系数,就可把单位消掉,忽略它们各自不同的度量,就可以归一化到 -1 和 1 之间的值进行比较。

欢迎大家关注我的个人公众号,同样的也是和该博客账号一样,专注分享技术问题,我们一起学习进步
在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值