caffe for windows的matlab接口(二):进行训练以及绘制loss

10 篇文章 0 订阅

参考:这里写链接内容
转载:这里写链接内容

为了文件夹不错乱,我在安装了Matlab的Caffe-master并列目录下建立了一个文件夹Mat_Train,在这个文件夹里放入了我们训练所需要的全部的东西。。。

保险起见,还是先尝试给出的案例,再尝试我的手掌识别案例。
这里写图片描述

mnist_data文件夹里存的是mnist数据集的lmdb文件以及lenet.prototxt。

移动完毕,接下来需要修改lenet_solver1.prototxt里面的路径:

# The train/test net protocol buffer definition
net: "lenet_train_test1.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "mnist_data/lenet"
# solver mode: CPU or GPU
solver_mode: CPU

lenet_train_test1.prototxt 被修改部分

name: "LeNet"  
layer {  
  name: "mnist"  
  type: "Data"  
  top: "data"  
  top: "label"  
  include {  
    phase: TRAIN  
  }  
  transform_param {  
    mean_file: "mean.binaryproto"  
    scale: 0.00390625  
  }  
  data_param {  
    source: "mnist_data/mnist_train_lmdb"  
    batch_size: 64  
    backend: LMDB  
  }  
}  
layer {  
  name: "mnist"  
  type: "Data"  
  top: "data"  
  top: "label"  
  include {  
    phase: TEST  
  }  
  transform_param {  
    mean_file: "mean.binaryproto"  
    scale: 0.00390625  
  }  
  data_param {  
    source: "mnist_data/mnist_test_lmdb"  
    batch_size: 100  
    backend: LMDB  
  }  
}  

再进行下一步操作之前,最好用bat测试一下是否能读取到这个prototxt并训练,排除这一步错误才能进行下步工作。
修改我的trainminist.bat文件,

F:\CaffeDev\Caffe-master\Build\x64\Release\caffe.exe train --solver=F:/CaffeDev/Mat_Train/lenet_solver1.prototxt
pause

测试一次能成功运行就可以,
这里写图片描述

读入模型

接下来再去读模型:

caffe.reset_all  
solver = caffe.Solver('lenet_solver1.prototxt'); 

结果,

Cleared 0 solvers and 0 stand-alone nets

显示一下,

>> solver

solver = 

  Solver (带属性):

          net: [1x1 caffe.Net]
    test_nets: [1x1 caffe.Net]

训练模型

一次性训练模型

solver.solve(); 

运行以后matlab跟待机一样,啥输出都没。显示正忙。。。
这里写图片描述
还以为出错,分析上面solver读取的两个net:
这里写图片描述
这里写图片描述
模型的输入竟然是empty的,难道我们的lmdb数据没有读进去,然后尝试了leveldb,以及各种改leveldb的路径,比如添加“./”之类的,都不行。这时候便想到了一种可能性,模型载入是不读取数据的,只有在运行时候读取数据,但是solver的solve方法是一次性训练模型,没有任何输出,matlab可能已经在训练模型了。
而且这时候我的电脑风扇响得很厉害。。。一般来说这样的话就是在运行东西了。其实这时候我们还可以看一眼我们的任务管理器,按Ctrl+Shift+Esc,打开任务管理器,发现matlab确实在运行东西,
这里写图片描述
等待一段时间之后,果然在solver文件中的指定路径下看到了我们训练好的model。。。

snapshot_prefix: "mnist_data/lenet"

这里写图片描述
为了避免这些模型是用空数据训练的,使用mnist的classification_demo测试一下,竟然手写数字都分类正确,这样便验证了我们的想法:solver.solve()是一次性训练数据,不会附带任何输出,matlab表现会如死机了。

训练模型step-by-step

去官网找:

Or train for only 1000 iterations(so that you can do something to its net before training more iterations)
solver.step(1000);

To get iteration number:
iter = solver.iter();

ta表达的意思是我们可以用step命令设置每次训练多少次以后,可以干一下别的事情,然后再进行训练。。。

好,卡壳了,设置完毕step为1表示我们想在每一次迭代都取出loss和accuracy,但是然后呢?怎么继续训练?找了很多教程都是Python的,受次启发,以及反复看caffe的官网,发现:

net.blobs('data').set_data(data);  
net.forward_prefilled();  
prob = net.blobs('prob').get_data();  

给出的解释简单翻译一下是:
net.forward 函数接受n维的输入,输出output的blob的数据

net.forward_prefilled使用的则是使用在模型中已经存在的数据继续训练,并不接受任何输入,以及提供任何输出。

看完这两个解释,思考一下,用step设置训练1次停一下,那么我们的数据是否依旧在blob中存着呢?

【最开始想法】那么就可以使用net.forward_prefilled做继续训练的工作,尝试一下:

%训练  
clear  
clc  
caffe.reset_all  
solver=caffe.Solver('lenet_solver1.prototxt');  
loss=[];  
accuracy=[];  

for i=1:10000  
    disp('.')  
    solver.step(1);  
    iter=solver.iter();  
    solver.net.forward_prefilled  
end  

【试验之后】按照上面的想法能训练,但是突然发现,为什么不要backward_prefilled呢?而且,去掉solver.net.forward_prefilled也能训练。应该是solver.step自动包含了forward和backward过程了,因此正式使用的训练代码是:

%训练  
clear  
clc   
caffe.reset_all  
solver=caffe.Solver('lenet_solver1.prototxt');  
loss=[];  
accuracy=[];  

for i=1:10000  
    disp('.')  
    solver.step(1);  
    iter=solver.iter();  
end  

接下来就是取出每次迭代的loss和accuracy了,想都不用想,用blob,为了训练快点,可以切换到GPU版本的caffe-windows,(我的显卡刚刚好不支持GPU三倍加速)代码如下:

clear  
clc  
close all  
format long %设置精度,caffe的损失貌似精度在小数点后面好几位   
caffe.reset_all%重设网络,否则载入两个网络会卡住  
solver=caffe.Solver('lenet_solver1.prototxt'); %载入网络  
loss=[];%记录相邻两个loss  
accuracy=[];%记录相邻两个accuracy  
hold on%画图用的  
accuracy_init=0;  
loss_init=0;  
for i=1:10000  
    solver.step(1);%每迭代一次就取一次loss和accuracy  
    iter=solver.iter();  
    loss=solver.net.blobs('loss').get_data();%取训练集的loss  
    accuracy=solver.test_nets.blobs('accuracy').get_data();%取验证集的accuracy  

    %画loss折线图  
    x=[i-1,i];  
    y=[loss_init loss];  
    plot(x,y,'r-')  
    drawnow  
    loss_init=loss;  
end  

要迭代10000次,每次画出loss,用CPU速度还是很慢的。。。这里截取了几张过程图,可以看到loss是没问题的,一直震荡下降。
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述
为了避免训练错误,我们来测试一下:

E:\CaffeDev\caffe-master\Build\x64\Release\caffe.exe test --model=lenet_train_test1.prototxt -weights=mnist_data/lenet_iter_10000.caffemodel  
pause

这里写图片描述

读取日志文件的loss

如果使用的是dos窗口caffe -train命令训练,那么提取loss和accuracy就需要定向到caffe默认的日志文件去,找的方法很简单。
在开机命令窗口输入%tmp%
这里写图片描述

按时间排序,找到最近的以caffe.exe开头的文件名称,用notepad++打开可以看到日志信息:
这里写图片描述
因为我的这里没有最近训练的记录,所以只说下方法···

读文件的方法有很多,我用正则表达式去匹配loss信息:

先将这个记录log的文件拷贝出来,
比如:

%my loss  
clear;  
clc;  
close all;  

train_log_file = 'caffe.exe.BINGO-PC.Bingo.log.INFO.20160924-193528.13464' ;  
train_interval = 100 ;  
test_interval = 500 ;  

[~, string_output] = dos(['type ' , train_log_file ]) ;  
pat='1 = .*? loss';  
o1=regexp(string_output,pat,'start');%用'start'参数指定输出o1为匹配正则表达式的子串的起始位置  
o2=regexp(string_output,pat,'end');%用'start'参数指定输出o1为匹配正则表达式的子串的结束位置  
o3=regexp(string_output,pat,'match');%用'match'参数指定输出o2为匹配正则表达式的子串   

loss=zeros(1,size(o1,2));  
for i=1:size(o1,2)  
    loss(i)=str2num(string_output(o1(i)+4:o2(i)-5));  
end  
plot(loss)  

运行:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值