- 博客(68)
- 资源 (32)
- 收藏
- 关注
原创 推荐系统(十二) 门控机制在CTR模型中应用梳理
门控机制在推荐系统被广泛应用,如多任务模型MMOE、PLE等,其主要作用相当于一个调节阀,控制信息流入或流出的程度,本文主要梳理几个包含门口机制思路的CTR模型。
2022-03-26 10:50:01
2746
原创 推荐系统(十) 「知识梳理」CTR模型中连续特征加入方法
主要梳理CTR模型中连续特征加入方法:No Embedding、Fileld Embedding、硬离散化、软离散化。
2022-03-19 16:46:09
594
原创 推荐系统(十一) 2021-2022年工业界推荐算法实践经验汇总
对2021-2022年,工业界推荐算法实践经验进行了梳理,主要以下七个维度进行归纳:推荐系统演化、召回、双塔模型、排序模型、重排模型、多目标模型、智能算力。
2022-03-19 16:35:12
1242
原创 ContextNet:基于上下文信息优化特征Embedding的CTR模型
逐层动态优化(dynamically refine)特征embedding向量,也是非常重要的。本文提出通过上下文信息动态优化特征embedding的CTR预估框架ContextNet
2022-03-06 22:30:19
3314
原创 语义分割学习笔记(五)——DenseImageData 数据层
1 参数message DenseImageDataParameter { // Specify the data source file. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 2; // The rand_skip variable is f
2017-11-27 20:27:50
1865
原创 语义分割学习笔记(四)——ENet 训练问题
根据ENet说明https://github.com/TimoSaemann/ENet/tree/master/Tutorial ,进行训练遇到以下问题1 No module named spatial_dropout ENet通过python接口定义了新层spatial_dropout,根据说明直接在终端启动训练,出现“No module named spatial_dropout”
2017-11-14 15:00:47
4223
7
原创 语义分割学习笔记(三)——SegNet Upsample层解析
1 参数设置message UpsampleParameter { // DEPRECATED. No need to specify upsampling scale factors when // exact output shape is given by upsample_h, upsample_w parameters. optional uint32 scale = 1
2017-11-02 10:29:08
4728
1
原创 语义分割学习笔记(二)——Windows下 Labelme 配置
1配置1.1资源下载 MIT分割标定工具:http://labelme2.csail.mit.edu/Release3.0/index.php?message=1 python版本:https://github.com/wkentaro/labelme 1.2python版本配置 首先安装Anaconda,安装后,在命令窗口用conda ...
2017-10-28 14:11:50
2814
1
原创 语义分割学习笔记(一)——SegNet 配置与训练
1 配置1.1 资源下载与参考 SegNet版本caffe: https://github.com/alexgkendall/caffe-segnet https://github.com/TimoSaemann/caffe-segnet-cudnn5参考: 项目主页:http://mi.eng.cam.ac.uk/projects
2017-10-25 09:46:12
3551
原创 2018校招——机器学习问题汇总
说明:问题主要来自牛客网面经。LR 专题1 讲一下逻辑回归,及优缺点2 用代码写出LR的损失函数(目标函数),损失函数如何推导?3 LR的优化方法及区别,梯度下降有哪几种4 LR的思想 LR对输入和输出的分布假设5 LR可以用来处理非线性问题么? 怎么做? 可以像SVM那样么? 为什么?6 LR模型为什么采用似然估计?7 LR为什么要用对数似然,不用平方损失和绝对值
2017-10-19 10:36:52
1527
原创 L1 L2正则化及贝叶斯解释
1 L1正则化和L2正则化区别L1得到的是稀疏权值,可以用于特征选择,假设参数服从Laplace分布(贝叶斯角度理解)L2得到的是平滑权值,因为所有权值都趋于最小,假设参数服从Gauss分布,(并趋于一致,因为一致时平方和,最小)2 L1正则化稀疏解理解2.1问题转化2.2图形化解释 2.3其他理解2.4
2017-10-19 10:19:58
3051
原创 Caffe学习笔记(九)——python接口各网络层构建
构建网络一 数据层1 基本说明layer { name: "cifar" //层的名字 type: "Data" //层类型 Data表示表示数据来源于LevelDB或LMDB top: "data" //输出层 top: "label" include { //该层属于训练阶段的层 phase: TRAIN } transfor
2017-05-29 22:29:38
1261
原创 caffe学习笔记(八)——binaryproto 转 npy、mat文件
主要介绍:对于caffe生成的均值文件binaryproto,在python和matlab接口使用时,如何转化为npy、mat文件。一 转npy文件#!/usr/bin/env pythonimport numpy as npimport cafferoot = 'F:/Data/'binary_path = root + 'mean_train.binaryproto' #bi
2017-05-29 22:21:24
3542
原创 Caffe学习笔记(七)—— solver参数说明及利用自己的数据集对权值微调
本文主要介绍:在进行网络训练和权值微调过程中,需要对solver中的参数进行设置,本文主要介绍solver中的参数设置,以及如何利用自己的数据集,对权值进行微调。1. solver参数设置net: "train_val.prototxt" //深度学习模型的网络结构文件test_iter: 1000 //1000指的是测试的批次,测试样本较多时,一次性执行全部数据,效率
2016-09-04 17:21:23
4824
原创 Caffe学习笔记(六)—— Windows下训练自己的数据
本文主要介绍:Windows下,根据自己的数据训练自己的网络模型。1. 图像数据转化为lmdb格式 转化方法及过程参考 http://blog.csdn.net/hong__fang/article/details/52424690,根据训练数据和测试数据,建立两个文件名及标签txt文件,train.txt和val.txt,然后运行comput_image_mean.bat,生成两个
2016-09-03 20:43:01
13471
4
原创 Caffe学习笔记(五)—— 相关cpp编译及数据转成lmdb格式
本文主要介绍:Windows下,如何caffe-windows-master\tools 文件夹中的cpp进行编译和调用,以及如何把图像转化为lmdb格式。1. 相关cpp编译1.1 创建控制台工程 在caffe-windows-master 目录下创建空白控制台工程,编译环境设置为:Release x64,把caffe-windows-master\tools 文
2016-09-03 19:56:50
7312
原创 Caffe学习笔记(四)——Windows 下caffe配置相关问题说明
本文主要介绍:Win10 64位系统下,再次配置caffe,遇到了一些新的问题,现对这些问题及其解决方法进行总结。详细的安装配置过程见以前博客:Caffe学习笔记(一)——Windows 下caffe安装与配置1. CUDA的安装问题CUDA的安装过程可以参考CUDA 7.5 安装及配置(WIN7 64 英伟达G卡 VS2012),但参考到第九步即可,第十步及其以后的过
2016-09-01 15:49:04
17147
3
原创 Caffe学习笔记(三)——Matlab接口
本文主要介绍:Windows下Caffe框架的Matlab接口,即Matlab如何调用Caffe框架中的函数,进行分类、提取特征以及训练。1 官网说明官网:点击打开链接2 注意事项待续。。。
2016-07-31 21:19:26
10160
原创 Caffe学习笔记(二)——AlexNet模型
深度学习笔记1 LeNet-5 21.1 局限性 21.2 理解 22 AlexNet 2.1 结构介绍 42.1.1 ReLU非线性 42.1.2 在多个GPU上训练 42.1.3 局部响应归一化 42.1.4 重叠Pooling 52.1.5 减少过拟合 62.2 总体结构 82.2.1 总体介绍 82.2.2 各层运算、维度和参数 92
2016-07-31 20:56:02
18308
原创 GDAL生成等高线——等值线
本文主要介绍:利用gdal的函数,根据DEM图像,生成等高线或等值线,两种方法,一种是利用GDAL自带的exe文件,一种是利用GDAL函数。说明:GDAL使用版本为Gdal2.0.0。1 利用GDAL自带exe,生成等高线1.1 参数说明 具体说明可见:GDAL实用工具简介 官网说明:gdal_contour.exe1.2 调用exe程序//数字 转 stringstring Float2S
2016-06-07 17:24:32
10665
1
原创 GDAL栅格矢量化
本文主要介绍:利用GDAL函数直接把图像转化为矢量图。说明:以下程序GDAL版本为Gdal2.0.0,如果使用低版本gdal库,会出现一些问题。1 头文件及声明 //栅格矢量化#include "gdal_alg.h"#include "gdal_priv.h" //添加GDAL库函数的头文件#include "ogrsf_frmts.h"int WriteShpFile(cons
2016-05-20 12:44:58
4451
1
原创 GDAL写矢量图
本文主要介绍:利用GDAL库写矢量文件,把栅格图转化为矢量图。1 相关资源 GDAL官网,ORG相关函数和读写矢量图介绍:http://www.gdal.org/ogr_apitut.html ORG相关函数及说明的中文资料:OGR入门2 写矢量函数 2.1 shp文件中写多边形int WritePolygonShp(){ const char *p
2016-05-20 11:42:50
2913
原创 Caffe学习笔记(一)——Windows 下caffe安装与配置
本文主要介绍:经过一番周折,在Windows7 64位系统下成功配置Caffe,下面总结一下基本的配置过程,以及配置过程中遇到的问题。配置环境:Windows7 X64 + CUDA7.0 + VS2013 + Matlab2014a1.安装CUDA1.1. 版本选择 至于版本的选择,安装7.5、7.0和6.5版本都可以,安装包网上到处可见,分享一个自己安装的版本:h
2016-05-04 21:32:14
60456
3
原创 OpenCV 常用函数(一)
本文主要介绍:Opencv常用函数,如均值、最大最小、归一化、滤波、旋转、求连通域等函数。一、基本函数//初始化Mat img = Mat::zeros(Height, Width, CV_8UC1);Mat img = Mat::ones(Height, Width, CV_8UC1);Mat img(Height, Width,CV_32FC1, Scalar(5))
2016-04-19 16:23:47
29575
原创 QT聚类(Quality Threshold Clustering)
本文主要介绍:QT聚类原理、优缺点及其实现。1 聚类过程比较简单的一种聚类方法,通过限定类额直径来聚类,大致过程如下(1)设定聚类直径阈值D;(2)以每一个样本为初始聚类中心,在特征空间,逐渐合并与之最近的样本,直到增加样本时,该类的直径将超过给定阈值D;直径D内的所有样本归为一类;(3)以每个样本为初始中心聚类完成后,把样本最多的一类作为第一类,从样本中移除该类样本,余下样本
2016-03-11 21:30:15
3071
原创 OpenCV常用函数——图像采样
本文主要介绍:Opencv实现图像采用。1.Mat数据类型:/*********************************************************************** 函数名称:MatImgSample 函数功能:对IplImage类型的图像进行采样 函数参数: src :原图像 dRatioX :列采样比率,0.5为2采样 dRa
2016-03-04 20:16:32
5096
原创 SPM——Spatial Pyramid Matching
1 基本介绍 SPM 全称是Spatial Pyramid Matching,出现的背景是bag of visual words模型被大量地用在了图像表示(Image representation)中,但是BOVW模型完全缺失了特征点的位置信息。SPM考虑空间信息,将图像分成若干块(sub-regions),分别统计每一子块的特征,最后将所有块的特征拼接起来,形成完整的特征,这就是SPM
2016-01-21 19:13:16
9143
1
原创 BOF——Bag-of-Featrures
本文主要介绍:BOF(Bag-of-Featrures)的原理及其应用。1.1 引言 文档分类领域有一种模型称为词袋(Bag of words)模型,它是自然语言处理与信息检索过程中的一种简化模型。在这种模型中,文本(段落或文档)被视为忽略了语法甚至语序的无序词汇集合。文本中每个单词的出现都是独立的,不依赖于其他词是否出现。词袋模型对文档分类有着重要的作用,它提出了一种基于统计的
2016-01-20 21:08:01
4720
1
原创 直方图交叉核
本文主要介绍:直方图交叉核(Histogram intersection kernel)又称 Pyramid match kernel,本文主要介绍其原理与计算方法。1. 基本思想直方图交叉核(Histogram intersection kernel)又称Pyramid match kernel,该核是一种基于隐式对应关系的内核函数,解决了无序、可变长度的矢量集合的判别分类的
2016-01-20 20:31:31
9313
8
原创 图像处理基础知识(三)——根据主轴方向旋转至水平或垂直方向
本文内容:主要介绍根据主轴方向,把图像旋转至水平或垂直方向,以及求最小外接矩形长宽比。1.旋转至水平方向2.旋转至垂直方向3. 求连通域最小外接矩形长宽比 for(i=0; i<Boundry.size(); i++) { xMap=Boundry[i].x*A[0][0]+Boundry[i].y*A[0][1]; yMap=Boundr
2015-12-08 19:42:33
4860
1
原创 图像处理基础知识(二)—— 中心矩求主轴方向
本文内容:主要介绍中心矩的定义,以及利用中心矩求取图像主轴方向。1.4 matlab求取归一化中心矩、hu不变矩和主轴方向function test % atan(phi) 值域为[-90,90] atan2(y,x) 值域为[-180,180]% 2phi范围为[-180, 180] 因此此处应用atan2% 所求主轴方向,为与x轴正向最小夹角,
2015-11-15 20:17:52
11694
原创 MFC基础知识(九)——几种创建DLL动态库的方法
本文主要介绍:用VS创建DLL动态库的几种方法: 1. 创建DLL工程+MFC头文件 2. 创建DLL工程+空项目 3. 创建控制台应用程序+MFC头文件1.创建DLL工程+MFC头文件(1)应用程序设置:
2015-09-11 11:44:39
2139
原创 libsvm在matlab中使用
安装及测试过程见: http://noalgo.info/363.html以下是使用过程中总结: 1. svmtrain 和svmpredict 输入参数train_label train_mat test_label test_mat都是double型,因此调用时需要注意数据类型;2.如果不知道test_label 要用一个矩阵代替,test_label不能缺省;3.heart_scal
2015-07-27 11:14:41
6466
2
原创 C++重载运算符
本文主要介绍:结构体中重载运算符、类重载运算符以及容器排序重载运算符。 1、结构体重载运算符typedef struct tagSaveImgFile{ tagSaveImgFile &operator = (tagSaveImgFile &other) //放在结构体内部 { m_scale = other.m_scale; m_imgPath
2015-07-10 17:17:24
959
原创 C++字符串之间转化——Unicode字符集
本文主要介绍:Unicode字符集下字符串之间以及字符串与数字之间的转化。 1.string、char*与 const char* <1>string->char*char *ctr = new char[str.length()+1]; strcpy(ctr,str.c_str()); delete[]ctr; //用完后释放字符串<2>string->const char*
2015-07-03 17:12:57
6076
原创 C++写XML
本文主要介绍:C++中利用TinyXml库写XML文件。 一、TinyXml库配置 详细配置见: http://blog.csdn.net/hong__fang/article/details/43340191 二、写XML文件程序 1.TinyXml中的一些类: TiXmlBase:整个TinyXML模型的基类。 TiXmlAttribute:对应于XML中的元素的属性。 TiXm
2015-07-03 16:15:23
1582
原创 C++字符串之间转化——多字节字符集
一、字符串之间转化 1.string、char*与 const char* <1>string->char* char *ctr = new char[str.length()+1]; strcpy(ctr,str.c_str()); delete[]ctr; //用完后释放字符串<2>string->const char* string str("good");
2015-07-03 11:31:09
1721
原创 C++计时器
本文主要介绍:C++中对运行程序进行计时。 一、计时程序 .h文件:#pragma once#include <windows.h> //头文件 typedef struct { LARGE_INTEGER start; LARGE_INTEGER stop; } stopWatch; class CHRTimer {
2015-07-03 10:15:29
1445
2
推荐系统 中文(蒋凡 译) + 推荐系统实践
2018-05-10
TinyXml库文件
2016-06-05
meanshift&&Normalized cut
2015-10-24
稀疏编码去噪KSVD-MOD
2015-07-29
Matlab关联VS
2015-05-25
微型计算机控制
2014-10-09
出租车计价器
2014-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人