排序:
默认
按更新时间
按访问量

语义分割学习笔记(五)——DenseImageData 数据层

1 参数 message DenseImageDataParameter { // Specify the data source file. optional string source = 1; // Specify the batch size. optional uint3...

2017-11-27 20:27:50

阅读数:279

评论数:1

语义分割学习笔记(四)——ENet 训练问题

根据ENet说明https://github.com/TimoSaemann/ENet/tree/master/Tutorial ,进行训练遇到以下问题 1 No module named spatial_dropout    ENet通过python接口定义了新层spatial_dropout,...

2017-11-14 15:00:47

阅读数:946

评论数:13

语义分割学习笔记(三)——SegNet Upsample层解析

1 参数设置 message UpsampleParameter { // DEPRECATED. No need to specify upsampling scale factors when // exact output shape is given by upsample_h, ...

2017-11-02 10:29:08

阅读数:1186

评论数:12

语义分割学习笔记(二)——Windows下 Lableme 配置

1 配置 1.1 资源下载      MIT分割标定工具:http://labelme2.csail.mit.edu/Release3.0/index.php?message=1       python版本:https://github.com/wkentaro/labelme    1....

2017-10-28 14:11:50

阅读数:504

评论数:0

语义分割学习笔记(一)——SegNet 配置与训练

1 配置 1.1 资源下载与参考  SegNet版本caffe:         https://github.com/alexgkendall/caffe-segnet           https://github.com/TimoSaemann/caffe-segnet-cudnn5 参考...

2017-10-25 09:46:12

阅读数:534

评论数:0

2018校招——机器学习问题汇总

说明:问题主要来自牛客网面经。 LR 专题 1 讲一下逻辑回归,及优缺点 2 用代码写出LR的损失函数(目标函数),损失函数如何推导? 3 LR的优化方法及区别,梯度下降有哪几种 4 LR的思想 LR对输入和输出的分布假设 5 LR可以用来处理非线性问题么? 怎么做? 可以像SVM那样么? 为什么...

2017-10-19 10:36:52

阅读数:498

评论数:0

L1 L2正则化及贝叶斯解释

1 L1正则化和L2正则化区别 L1得到的是稀疏权值,可以用于特征选择,假设参数服从Laplace分布(贝叶斯角度理解) L2得到的是平滑权值,因为所有权值都趋于最小,假设参数服从Gauss分布,(并趋于一致,因为一致时平方和,最小) 2 L1正则化稀疏解理解 2.1 问题转化 2.2 ...

2017-10-19 10:19:58

阅读数:338

评论数:0

Caffe学习笔记(九)——python接口各网络层构建

构建网络 一 数据层 1 基本说明 layer { name: "cifar" //层的名字 type: "Data" //层类型 Data表示表示数据来源于LevelDB或LMDB top: "data" /...

2017-05-29 22:29:38

阅读数:683

评论数:0

caffe学习笔记(八)——binaryproto 转 npy、mat文件

主要介绍:对于caffe生成的均值文件binaryproto,在python和matlab接口使用时,如何转化为npy、mat文件。 一 转npy文件 #!/usr/bin/env python import numpy as np import caffe root = 'F:/Data/' ...

2017-05-29 22:21:24

阅读数:2316

评论数:3

Caffe学习笔记(七)—— solver参数说明及利用自己的数据集对权值微调

本文主要介绍:在进行网络训练和权值微调过程中,需要对solver中的参数进行设置,本文主要介绍solver中的参数设置,以及如何利用自己的数据集,对权值进行微调。 1. solver参数设置 net: "train_val.prototxt" //深度学习模型的网络结构文...

2016-09-04 17:21:23

阅读数:3870

评论数:1

Caffe学习笔记(六)—— Windows下训练自己的数据

本文主要介绍:Windows下,根据自己的数据训练自己的网络模型。 1. 图像数据转化为lmdb格式     转化方法及过程参考 http://blog.csdn.net/hong__fang/article/details/52424690,根据训练数据和测试数据,建立两个文件名及标签txt文件...

2016-09-03 20:43:01

阅读数:10177

评论数:11

Caffe学习笔记(五)—— 相关cpp编译及数据转成lmdb格式

本文主要介绍:Windows下,如何caffe-windows-master\tools 文件夹中的cpp进行编译和调用,以及如何把图像转化为lmdb格式。 1. 相关cpp编译 1.1 创建控制台工程       在caffe-windows-master 目录下创建空白控制台工程,编译环境...

2016-09-03 19:56:50

阅读数:5738

评论数:0

Caffe学习笔记(四)——Windows 下caffe配置相关问题说明

本文主要介绍:Win10 64位系统下,再次配置caffe,遇到了一些新的问题,现对这些问题及其解决方法进行总结。 详细的安装配置过程见以前博客:Caffe学习笔记(一)——Windows 下caffe安装与配置 1. CUDA的安装问题 CUDA的安装过程可以参考CUDA ...

2016-09-01 15:49:04

阅读数:11211

评论数:6

Caffe学习笔记(三)——Matlab接口

本文主要介绍:Windows下Caffe框架的Matlab接口,即Matlab如何调用Caffe框架中的函数,进行分类、提取特征以及训练。 1 官网说明 官网:点击打开链接 2 注意事项 待续。。。

2016-07-31 21:19:26

阅读数:6038

评论数:0

Caffe学习笔记(二)——AlexNet模型

深度学习笔记 1 LeNet-5 2 1.1 局限性 2 1.2 理解 2 2 AlexNet  2.1 结构介绍 4 2.1.1 ReLU非线性 4 2.1.2 在多个GPU上训练 4 2.1.3 局部响应归一化 4 2.1.4 重叠Pooling 5 2.1.5 减少过拟合 6 2.2 总体结...

2016-07-31 20:56:02

阅读数:14276

评论数:0

GDAL生成等高线——等值线

本文主要介绍:利用gdal的函数,根据DEM图像,生成等高线或等值线,两种方法,一种是利用GDAL自带的exe文件,一种是利用GDAL函数。说明:GDAL使用版本为Gdal2.0.0。1 利用GDAL自带exe,生成等高线1.1 参数说明 具体说明可见:GDAL实用工具简介 官网说明:gda...

2016-06-07 17:24:32

阅读数:3138

评论数:0

GDAL栅格矢量化

本文主要介绍:利用GDAL函数直接把图像转化为矢量图。说明:以下程序GDAL版本为Gdal2.0.0,如果使用低版本gdal库,会出现一些问题。1 头文件及声明 //栅格矢量化#include "gdal_alg.h" #include "gdal_priv.h&q...

2016-05-20 12:44:58

阅读数:2267

评论数:3

GDAL写矢量图

本文主要介绍:利用GDAL库写矢量文件,把栅格图转化为矢量图。1 相关资源 GDAL官网,ORG相关函数和读写矢量图介绍:http://www.gdal.org/ogr_apitut.html ORG相关函数及说明的中文资料:OGR入门2 写矢量函数 2.1 ...

2016-05-20 11:42:50

阅读数:1613

评论数:0

Caffe学习笔记(一)——Windows 下caffe安装与配置

本文主要介绍:经过一番周折,在Windows7 64位系统下成功配置Caffe,下面总结一下基本的配置过程,以及配置过程中遇到的问题。 配置环境:Windows7 X64 + CUDA7.0 + VS2013 + Matlab2014a 1.安装CUDA 1.1. 版本选择 ...

2016-05-04 21:32:14

阅读数:48804

评论数:15

OpenCV 常用函数(一)

本文主要介绍:Opencv常用函数,如均值、最大最小、归一化、滤波、旋转、求连通域等函数。 一、基本函数 //初始化 Mat img = Mat::zeros(Height, Width, CV_8UC1); Mat img = Mat::ones(Height, Width, C...

2016-04-19 16:23:47

阅读数:11401

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭