DeepSeek+Coze,一个简单的工作流,就可批量生成爆款表情包

只用一个简单到离谱的工作流

就能让你轻松拿捏批表情包制作?

比如这样的

再比如这样的

是的,你没听错,也没看错!

这不是什么高大上的黑科技,也不是需要你熬夜秃头的复杂操作。

今天,就要用一种简单到让你怀疑人生的方式,带你走进批量表情包制作的大门,让你轻松拥有专属的表情包图库!

想象一下,你只需要动动手指,点点屏幕,那些曾经让你捧腹大笑的表情包,就能像流水线上的产品一样,源源不断地从你的手机或电脑里“冒”出来。

这听起来是不是有点像魔法?但告诉你,这比魔法还靠谱,因为它只需要一个——Coze工作流

而当coze和deepseek结合之后,工作流可以变得更加丝滑!

话不多话,接下来让我们来实操

全程一共两步

第一步:创建工作流

第二步:创建应用

先来说第一步,进入coze的主页,点击工作空间-资源库,然后创建一个工作流

工作流的的名称和描述,大家可以根据需要来填写

进入工作流后,会有开始和结束两个初始节点,接下来我们就需要在这两个节点中来增加更多的节点

开始节点,我们设置两个参数,分别是theme和style,主要用来填写表情包的主题和风格

接下来新增一个文本处理节点,用来处理提示词(因为这个deepseek插件,是我们通过api创建的,为了保证提示词稳定,所以增加一个文本处理节点来拼接提示词),参数设置如下:

参数String1:引入开始节点的theme

参数String2:引入开始节点的style

字符串拼接:大家可以根据需要进行拼接,或者按照文末的方式免费领取我设置的提示词

接下来在文本处理节点的下面,新增一个deepseek节点

节点的参数设置如下

api_key:填写火山引擎的API,或者deepseek官网的api

base_url:填写火山引擎或者deepseek的接口地址

model:填写火山引擎或者deepseek的模型ID

prompt:引用文本处理节点的output参数

接下来在创建一个循环节点,参数设置如下:

循环类型:制定循环次数

循环次数:设置为2,这里大家也可以根据需要进行设置,但是不建议数量过多

中间变量:引用deepseek节点的message

输出参数:引用循环体内的图像生成,变量类型为Array

循环体内部增加图像生成节点,参数设置如下

模型:选择通用Pro

比例:选择1:1

生成质量:拉满

输入参数input:变量值引用循环节点的var_message

提示词:大家可以根据需要进行拼接,或者按照文末的方式免费领取我设置的提示词

结束节点参数设置如下

输出变量output:参数值引用循环节点的output

全部搞定之后,试运行没问题,就可以点击顶部的发布

接下来进行第二步,创建一个应用

回到coze首页,点击工作空间-项目开发,然后创建一个应用

这里我就不新建应用了,直接用之前的应用

进入到应用详情页后,将刚才发布的工作流添加进来

然后用容器组件,文本组件和图片组件新增一个表情包的入口

接下来再使用按钮组件,容器组件,多行输入组件和下拉选择组件,新增一个表情包主题输入页

然后再使用图片组件,容器组件和文本组件新增一个表情包生成页

页面设计完成之后,接下来我们就为页面添加业务逻辑

首先是首页,我们期望点击表情入口之后,可以跳转到表情包主题输入页

所以增加一个页面跳转的事件,具体参数如下

事件类型:点击时

执行动作:页面跳转

页面类型:内容页面

选择页面:表情包主题输入页

接下来表情包主题输入页,我们期望用户输入完内容,并点击立即生成按钮之后,可以调用工作流生成表情包

所以这里需要为按钮增加调用工作流和页面跳转两个事件

调用工作流事件设置如下:

事件类型:点击时

执行动作:调用工作流

workflow:选择刚刚的工作流

theme:选择多行输入组件的内容

style:选择下拉选择组件的内容

页面跳转配置如下

事件类型:点击时

执行动作:页面跳转

页面类型:内容页面

选择页面:表情包生成页

表情包生成页的表情,因为是两组数据,所以分别选择对应的数组的数据[0]和[1]

全部搞定之后,点击发布即可

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值