一、 引言
随着深度学习技术的快速发展,大规模预训练模型(如BERT、GPT、T5等)在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成功。这些模型通过在大量数据上进行预训练,学习到了丰富的特征表示,能够有效地迁移到各种下游任务中。然而,预训练模型通常是通用的,为了在特定任务上取得更好的性能,通常需要进行微调(Fine-tuning)。本文将详细介绍大模型微调的概念、方法、挑战以及最佳实践。
二、 什么是大模型微调
大模型微调(Fine-tuning)是指在预训练模型的基础上,通过在特定任务的数据集上进行进一步训练,使模型适应特定任务的过程。预训练模型通常在大规模通用数据集上进行训练,学习到了通用的特征表示,而微调则是在这些通用特征的基础上,针对特定任务进行优化。
1、预训练与微调的区别
预训练:在大规模数据集上进行训练,目标是学习通用的特征表示。例如,BERT在Wikipedia和BookCorpus上进行预训练,学习语言的基本结构和语义。
微调:在特定任务的数据集上进行训练,目标是使模型适应特定任务。例如,在情感分析任务上微调BERT,使其能够更好地理解情感相关的文本。
2、举个例子
我们可以用一个更贴近日常生活的例子来解释大模型微调的概念:把预训练模型比作一个“通才厨师”,而微调则是让这个厨师专攻某一种菜系。
3、例子详解
预训练阶段: 想象有一个通才厨师,他通过多年的学习和实践(预训练),掌握了各种烹饪技巧,比如煎、炒、蒸、煮、烤等,同时也熟悉多种食材的特性和搭配方法。这些技能让他能够应对各种常见的烹饪需求(通用特征表示)。
类比到预训练模型,它通过在大规模通用数据集(如 Wikipedia、互联网文本等)上的训练,学会了语言的基本语法、语义和上下文关系。
微调阶段: 现在,这位通才厨师被一家餐厅聘用,这家餐厅专门做川菜(特定任务)。为了满足餐厅的需求,厨师需要进一步学习川菜的独特技巧,比如如何调配麻辣味道、如何掌握火候、如何使用特定的调料(微调)。
类比到模型微调,预训练模型在特定任务的数据集(如情感分析数据集、医疗文本数据集等)上进一步训练,调整参数,使其更好地适应任务需求。
结果: 经过针对性训练,这位厨师成为了川菜领域的专家(模型在特定任务上性能提升)。同时,他仍然保留了其他菜系的烹饪能力(预训练模型的通用知识),可以在需要时快速适应其他菜系(迁移到其他任务)。
4、类比总结:
通才厨师:预训练模型,具备通用能力。
川菜训练:微调过程,针对特定任务优化。
餐厅表现:模型在特定任务上的性能。
三、微调有什么好处
1、特化技能
通过微调可以使模型在特定任务或领域上表现更出色。预训练模型虽然具备广泛的知识,但通过微调,可以使其专注于特定任务(如情感分析、医学文本处理等),从而提升在该任务上的性能。
2、提高准确性
通过在特定数据集上进行微调,模型能够更好地理解任务相关的细节和模式,从而提高预测或分类的准确性。相比直接使用预训练模型,微调后的模型在特定任务上的表现通常更优。
3、节省时间和资源
微调不需要从头训练模型,只需在预训练模型的基础上进行少量调整。这大大减少了训练时间和计算资源的消耗,尤其适用于数据量有限或计算资源不足的场景。
4、学习能力更强
微调使模型能够快速适应新的任务或领域。通过少量数据的调整,模型可以灵活应对不同的应用场景,而无需重新训练整个模型。这种灵活性使得微调成为解决多样化问题的有效方法。
四、结语
微调就是将通用模型,用最小的调整成本,变成专家模型。把什么都会一点的模型,变成某个领域的专家。是将预训练模型迁移到特定任务的关键步骤。通过合理的微调方法和技术,可以显著提升模型在特定任务上的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。