一、揭开Agent开发的迷雾
在人工智能领域,代理(Agent)的开发始终是一个充满挑战与机遇的方向。当开发者们雄心勃勃地启动第一个代理项目时,往往会被“智能体”的概念所迷惑——误以为编写几个提示词、串联几次工具调用就能构建出真正具备自主性的代理。然而,现实往往泼来冷水:看似正常运行的原型,可能在遇到边缘情况时瞬间崩溃,暴露出“伪智能”的本质——没有真实状态管理、缺乏记忆能力、更不具备深度推理逻辑,不过是一个精心包装的提示词循环链。
本文将结合实际开发经验,以Agno框架为例,深入解析代理设计的五个难度层级。每个层级均配备完整的代码实现与技术要点,帮助开发者从基础工具调用逐步过渡到复杂系统构建,避免陷入常见陷阱,最终打造出真正可靠的智能代理。
二、Level 1:工具与指令驱动的基础代理
2.1 核心概念与应用场景
作为代理开发的入门级别,Level 1的核心在于**“指令引导下的工具调用循环”**。此时的代理本质上是一个“会调用工具的LLM”,通过预设的指令告诉代理“做什么”,借助工具接口实现“如何做”。这类代理适用于简单的自动化任务,例如天气查询、数据抓取、基础API调用等。尽管功能有限,但已能体现代理的基本特征:接收任务→调用工具→返回结果的闭环流程。
2.2 代码实现与关键参数
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools
from textwrap import dedent
agno_assist = Agent(
name="Agno AGI",
model=OpenAIChat(id="gpt-4.1"),
description=dedent("""\
你是"Agno AGI",一个基于Agno框架的自主AI代理。你的目标是通过提供解释、可运行的代码示例以及关键概念的可视化/音频说明,帮助开发者理解和使用Agno框架。"""),
instructions="Search the web for information about Agno.", # 核心指令:搜索Agno相关信息
tools=[DuckDuckGoTools()], # 工具配置:集成DuckDuckGo搜索工具
add_datetime_to_instructions=True, # 自动为指令添加时间戳
markdown=True # 支持Markdown格式输出
)
# 执行查询:"什么是Agno?"
agno_assist.print_response("What is Agno?", stream=True)
2.3 技术要点解析
-
指令设计
指令需明确具体,避免歧义。例如“Search the web for recent stock prices of Apple”比“Get Apple stock info”更易执行。
-
工具集成
支持REST API、函数调用等多种工具类型,Agno框架内置DuckDuckGo、PythonTools等常用工具,可快速接入。
-
循环机制
默认单次调用,如需多轮交互需手动开启循环逻辑。此时代理无记忆能力,每次调用均为独立操作。
2.4 局限性与升级方向
-
缺乏上下文关联
无法处理多轮对话,例如用户后续提问“对比微软的同类产品”时,代理无法关联前序搜索结果。
-
依赖完美指令
若指令未覆盖所有场景(如网络超时处理),代理会直接失败。
-
升级建议
进入Level 2,引入知识检索与记忆模块,提升代理的上下文感知能力。
三、Level 2:知识检索与短期记忆代理
3.1 核心升级:从“无状态”到“有记忆”
Level 2的关键突破在于“知识动态获取”与“短期记忆存储”*。LLM的上下文容量有限(如GPT-4通常为8k token),无法容纳大量背景知识,因此需通过实时检索(RAG架构)获取外部信息。同时,引入内存存储机制,记录对话历史、工具调用结果等状态,使代理具备“上下文感知”能力,可处理多轮交互任务。
3.2 代码实现:RAG与内存的结合
# 导入相关模块
from agno.knowledge import UrlKnowledge
from agno.storage import SqliteStorage
from agno.vector_db import LanceDb, SearchType
from agno.embedders import OpenAIEmbedder
from agno.rerankers import CohereReranker
# 配置知识底座(RAG架构)
knowledge_base = UrlKnowledge(
urls=["https://docs.agno.com/introduction.md"], # 待索引的文档URL
vector_db=LanceDb(
uri="tmp/lancedb", # 向量数据库存储路径
table_name="agno_docs",
search_type=SearchType.hybrid, # 混合搜索(全文+语义)
embedder=OpenAIEmbedder(id="text-embedding-3-small"), # 文本嵌入模型
reranker=CohereReranker(model="rerank-multilingual-v3.0") # 重排序模型
)
)
# 配置内存存储(SQLite)
storage = SqliteStorage(table_name="agent_sessions", db_file="tmp/agent.db")
# 初始化代理
agno_assist = Agent(
name="Agno AGI",
model=OpenAIChat(id="gpt-4.1"),
description="...", # 同Level 1描述
instructions="Answer questions about Agno based on provided knowledge.", # 指令调整为基于知识回答
tools=[PythonTools(), DuckDuckGoTools()], # 新增Python工具支持代码执行
knowledge=knowledge_base, # 注入知识底座
storage=storage, # 启用内存存储
add_history_to_messages=True, # 将对话历史加入输入
num_history_runs=3, # 保留最近3轮历史
markdown=True
)
# 首次运行需加载知识(后续可注释)
# agno_assist.knowledge.load(recreate=True)
agno_assist.print_response("What is Agno's core framework design?", stream=True)
3.3 技术架构解析
-
RAG流程
用户提问→文本分割→向量检索→文档切片重排序→生成回答,实现“以检索补知识库之不足”。
-
内存管理
通过
storage
参数接入SQLite数据库,存储agent_sessions
表,记录session_id
、messages
、tool_calls
等字段,支持get_history()
、save_state()
等操作。 -
混合搜索
SearchType.hybrid
结合关键词匹配(全文搜索)与语义相似性(向量搜索),提升检索精度,减少“幻觉”问题。
3.4 典型应用场景
-
客服机器人
处理客户关于产品手册的多轮咨询,如“如何安装设备→安装后无法启动怎么办”。
-
代码辅助工具
基于内部API文档,回答开发者“某函数的参数类型→如何处理异常返回”等问题。
3.5 挑战与改进
-
冷启动问题
首次加载知识需时间,可通过预索引优化。
-
内存膨胀
长期运行可能导致数据库过大,需添加
max_history
参数限制保留轮次。 -
下一步升级
Level 3将引入长期记忆与推理能力,解决跨会话的个性化需求与复杂问题拆解。
四、Level 3:长期记忆与推理增强代理
4.1 核心能力:跨会话记忆与逻辑推理
Level 3的代理具备两大突破:
-
长期记忆(Long-Term Memory)
存储跨会话的用户偏好、历史任务结果,实现个性化服务。例如记住用户习惯的时间格式、常用工具参数等。
-
推理能力(Reasoning)
通过分解问题、生成子任务、评估工具调用结果,提升复杂任务的成功率。例如将“分析某公司财报”拆解为“获取营收数据→对比行业均值→识别增长趋势”等步骤。
4.2 代码实现:记忆模块与推理工具
from agno.memory import Memory, SqliteMemoryDb
from agno.tools import ReasoningTools
# 配置长期记忆数据库
memory = Memory(
model=OpenAIChat(id="gpt-4.1"), # 使用LLM生成记忆摘要
db=SqliteMemoryDb(
table_name="user_memories", # 存储用户相关记忆
db_file="tmp/agent.db",
delete_memories=True, # 支持删除过期记忆
clear_memories=True # 支持清空记忆
),
user_id="ava" # 标识用户身份
)
# 初始化代理(更换为Claude模型以增强推理)
agno_assist = Agent(
name="Agno AGI",
model=Claude(id="claude-3-7-sonnet-latest"),
description="...",
instructions="Analyze user requests and use reasoning to decompose tasks.", # 推理指令
tools=[PythonTools(), DuckDuckGoTools(), ReasoningTools(add_instructions=True)], # 新增推理工具
memory=memory, # 注入记忆模块
enable_agentic_memory=True, # 启用代理自主记忆管理
add_history_to_messages=True,
num_history_runs=5, # 保留更多历史(5轮)
markdown=True
)
# 示例对话:设置用户偏好
agno_assist.print_response("Always start your messages with 'hi ava'", stream=True)
# 后续对话自动应用记忆
agno_assist.print_response("What is the best way to learn agent design?", stream=True)
4.3 关键技术点
记忆管理
-
记忆生成
通过
memory.save()
接口将关键信息(如用户指令、工具返回结果)存入数据库,LLM自动生成摘要。 -
记忆检索
基于
user_id
和语义相似性检索相关记忆,例如用户再次提问时,代理会优先查找历史中同类问题的解决方案。
推理工具
-
任务分解
ReasoningTools
支持将复杂问题拆解为step1→step2→stepN
的子任务链,例如“预测某产品销量”可拆解为“获取历史数据→分析影响因素→选择预测模型→验证结果”。 -
工具调用决策
通过
should_call_tool()
函数评估是否需要调用工具,避免冗余操作。例如已知内存中有相关数据时,直接使用内存而非重新搜索。
4.4 应用场景举例
-
个性化助手
记住用户的日程偏好(如“每周三下午开会”),自动调整提醒时间;根据用户阅读历史推荐相关资料。
-
科研辅助代理
分析实验数据时,自动回顾过往失败案例,调整实验参数;基于领域知识库推导新的研究假设。
4.5 技术挑战
-
记忆隐私
多用户场景下需确保
user_id
隔离,防止数据泄露。 -
推理效率
深度推理可能导致响应延迟,需通过缓存(如
lru_cache
)优化高频任务。 -
下一步目标
Level 4将探索多代理协作,通过分工提升复杂任务处理能力。
五、Level 4:多代理团队协作
5.1 协作模式:从“单兵作战”到“团队分工”
Level 4的核心在于**“专业化分工与跨代理协同”**。单个代理的能力边界明显(如擅长搜索或数据分析),通过组建代理团队,可拆解复杂任务为多个子任务,由不同代理并行处理。Agno框架支持三种协作模式:
-
Coordinate(协调模式)
主代理分配任务给子代理,收集结果后整合输出。
-
Route(路由模式)
根据任务类型自动路由至对应子代理(如金融问题→Finance Agent,技术问题→Tech Agent)。
-
Collaborate(协作模式)
子代理间直接通信,共同解决问题(如代码代理与测试代理联合调试)。
5.2 代码实现:金融分析团队示例
from agno.agent import Agent
from agno.team import Team
from agno.tools import DuckDuckGoTools, YFinanceTools, ReasoningTools
# 定义子代理:网络搜索代理
web_agent = Agent(
name="Web Search Agent",
role="Handle web search requests",
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
instructions="Always include sources" # 强制要求返回来源
)
# 定义子代理:金融数据代理
finance_agent = Agent(
name="Finance Agent",
role="Handle financial data requests",
model=OpenAIChat(id="gpt-4o-mini"),
tools=[YFinanceTools()],
instructions=[
"提供简洁准确的金融数据",
"使用表格展示股价、市盈率(P/E)、市值(Market Cap)"
]
)
# 定义团队 leader
team_leader = Team(
name="Reasoning Finance Team Leader",
mode="coordinate", # 采用协调模式
model=Claude(id="claude-3-7-sonnet-latest"), # 使用Claude增强推理
members=[web_agent, finance_agent], # 子代理列表
tools=[ReasoningTools(add_instructions=True)], # 推理工具
instructions=[
"用表格展示数据",
"仅输出最终答案,无需其他文本"
],
show_members_responses=True, # 显示子代理中间结果
enable_agentic_context=True, # 启用跨代理上下文共享
success_criteria="团队成功完成任务" # 任务完成条件
)
# 执行复杂任务:分析美国关税对关键行业的影响
team_leader.print_response(
"""\
分析近期美国关税对以下关键行业市场表现的影响:
- 钢铁与铝:(X, NUE, AA)
- 科技硬件:(AAPL, DELL, HPQ)
任务要求:
1. 比较关税实施前后的股价表现
2. 识别供应链中断情况及成本影响百分比
3. 分析企业战略应对措施(如回流生产、价格调整、供应商多元化)
""",
stream=True,
stream_intermediate_steps=True, # 流式输出中间步骤
show_full_reasoning=True # 展示完整推理过程
)
5.3 协作流程解析
-
任务分解
Leader代理接收任务后,通过推理工具判断需要搜索关税政策细节(Web Agent)和获取股票数据(Finance Agent)。
-
并行执行
Web Agent搜索“美国近期关税政策对钢铁行业的具体措施”,Finance Agent获取X、NUE等股票的前后股价数据。
-
结果整合
Leader收集子代理结果,分析供应链影响(如钢铁行业成本增加15%),并总结企业应对策略(如某公司将30%产能转移至东南亚)。
5.4 挑战与最佳实践
-
通信开销
跨代理调用可能产生延迟,需优化网络请求频率,可通过批量调用减少交互次数。
-
责任链设计
明确Leader与子代理的职责边界,避免出现“代理不知道何时该调用其他代理”的问题。
-
失败处理
添加重试机制(如子代理调用超时后自动切换至备用代理),并设计人工介入接口。
-
适用场景
适合需要多领域知识的复杂任务,如市场调研、跨学科研究、大型系统运维等。
六、Level 5:代理即基础设施(Agentic Systems)
6.1 本质突破:从“功能模块”到“独立系统”
Level 5标志着代理从“应用层工具”升级为“底层基础设施”。此时的代理系统具备以下特征:
-
全流程自动化
接收用户请求→触发异步工作流→实时流式返回结果,无需人工干预。
-
高可用性架构
支持负载均衡、故障转移、水平扩展,可应对高并发场景。
-
深度集成能力
通过API对接现有业务系统(如ERP、CRM),成为企业数字化转型的核心组件。
6.2 技术架构与实现难点
6.2.1 核心组件
-
API网关
处理用户请求,支持RESTful/GraphQL接口,实现认证(OAuth2)、限流、监控等功能。
-
工作流引擎
管理代理的异步执行,支持状态持久化(如使用Redis存储任务进度)、任务调度(定时/事件触发)。
-
流式通信
通过WebSocket或Server-Sent Events (SSE) 实现结果实时推送,解决长连接管理问题。
-
监控与日志
集成Prometheus+Grafana监控代理性能(如响应时间、工具调用成功率),ELK Stack记录详细日志。
6.2.2 代码实现与关键逻辑
# 假设使用FastAPI构建API网关
from fastapi import FastAPI, WebSocket, Query
from agno.system import AgenticSystem
from agno.workflow import AsyncWorkflow, WorkflowStatus
from pydantic import BaseModel
import uuid
import json
# 定义请求模型
class AgentRequest(BaseModel):
user_query: str
agent_type: str = "default"
priority: int = 5 # 1-10优先级
# 初始化代理系统
app = FastAPI()
workflow_engine = AsyncWorkflow(
backend="redis://localhost:6379/0", # 使用Redis存储工作流状态
result_ttl=3600, # 结果缓存1小时
max_retries=3, # 任务失败重试3次
concurrency_limit=100 # 最大并发任务数
)
system = AgenticSystem(
workflow_engine=workflow_engine,
default_agent=Agent(
name="System Agent",
model=Claude(id="claude-3-10"),
tools=[PythonTools(), DatabaseTools()],
instructions="Handle complex business workflows with async processing."
)
)
@app.websocket("/agent/stream")
async def agent_stream(websocket: WebSocket, request_id: str = Query(...)):
await websocket.accept()
try:
# 从Redis加载工作流状态
workflow = await workflow_engine.get_workflow(request_id)
if not workflow:
await websocket.send_text(json.dumps({"error": "Invalid request_id"}))
return
# 流式推送结果
while True:
status = await workflow.get_status()
if status == WorkflowStatus.COMPLETED:
result = await workflow.get_result()
await websocket.send_text(json.dumps({"status": "complete", "data": result}))
break
elif status == WorkflowStatus.FAILED:
error = await workflow.get_error()
await websocket.send_text(json.dumps({"status": "failed", "error": error}))
break
elif status == WorkflowStatus.RUNNING:
progress = await workflow.get_progress()
await websocket.send_text(json.dumps({"status": "running", "progress": progress}))
await asyncio.sleep(0.5) # 每秒更新状态
except Exception as e:
await websocket.send_text(json.dumps({"error": str(e)}))
@app.post("/agent/request")
async def create_request(req: AgentRequest):
request_id = str(uuid.uuid4())
# 启动异步工作流
await workflow_engine.start_workflow(
request_id=request_id,
agent=system.default_agent,
task=req.user_query,
metadata={
"agent_type": req.agent_type,
"priority": req.priority
}
)
return {"request_id": request_id, "status": "accepted"}
6.3 工程化挑战与解决方案
- 状态持久化
-
问题
异步任务可能因服务器重启、网络中断导致状态丢失。
-
方案
使用Redis/PostgreSQL等持久化存储,在工作流启动时将初始状态(如
request_id
、agent_config
)存入数据库,每次状态变更(如RUNNING→COMPLETED
)时更新记录。
2.流量控制
-
问题
高并发场景下可能因资源耗尽导致系统崩溃。
-
方案
1 、基于
concurrency_limit
2、采用优先级队列(如Redis Sorted Sets),确保高优先级任务(如金融交易)优先执行;
3、引入熔断机制,当错误率超过阈值时自动拒绝新请求。
- 监控与可观测性
关键指标
-
吞吐量
每秒处理的请求数;
-
延迟
从接收请求至返回首个结果的时间;
-
工具调用成功率
如数据库查询、API调用的失败率;
-
内存/CPU使用率
工作进程的资源占用情况。
实现方案
-
在
AgenticSystem
中集成Prometheus客户端,暴露agent_workflow_duration_seconds
等指标; -
使用ELK Stack(Elasticsearch+Logstash+Kibana)收集代理日志,支持按
request_id
追踪完整调用链。
4、安全与合规
-
数据加密
传输层使用TLS 1.3加密WebSocket通信,存储层对用户敏感数据(如
user_query
)进行AES-256加密; -
权限管理
通过OAuth2.0验证客户端身份,基于RBAC(角色权限控制)限制不同租户的代理调用范围;
-
审计日志
记录所有代理操作(如工具调用、内存访问),满足GDPR、ISO 27001等合规要求。
七、从失败到成功:代理设计的核心原则
7.1 避免“为了复杂而复杂”
-
反模式案例
某团队在Level 2阶段过早引入多代理协作(Level 4),试图构建“全能型”代理,但因缺乏基础记忆与推理能力,导致子代理间协调混乱,任务成功率不足30%。
-
正确路径
遵循“渐进式升级”原则,先确保单代理在当前层级稳定运行(如Level 2能可靠处理知识检索),再进入下一层级。
7.2 重视“可观测性”而非“黑箱化”
-
常见问题
代理在生产环境中出现“幻觉”(返回错误信息)或工具调用失败时,因缺乏日志记录无法定位问题。
解决方案
- 在每个层级强制添加日志输出(如Level 1记录每次工具调用的输入/输出);
- 在Level 3及以上实现“可解释性接口”,如
get_reasoning_steps()
返回代理的决策逻辑树。
7.3 平衡“自主性”与“人工介入”
-
过度自主风险
Level 5代理在处理高风险任务(如金融转账、医疗诊断)时,若完全自主决策可能引发严重后果。
混合模式设计
- 定义“安全阈值”:如代理在调用支付接口前,自动触发人工审批流程;
- 提供紧急终止接口:通过API或可视化界面强制停止异常运行的代理工作流。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。