在人工智能席卷全球的今天,你是否常被这些术语困扰:
- 同事说“这个需求用机器学习就能解决”,机器学习究竟是什么?
- 新闻里“深度学习突破医疗影像识别瓶颈”,深度学习有何特别?
- 朋友圈刷屏“某公司发布千亿参数大模型”,大模型为何如此强大?
这些概念层层递进却又紧密相连。理解它们的关系,是看懂AI世界的第一块拼图。本文将用最清晰的方式为你揭开迷雾。
一、机器学习:让机器学会学习的科学
定义核心:机器学习(Machine Learning, ML)是人工智能的一个分支,研究如何让计算机系统从数据中自动学习并改进性能,而无需显式编程每一步规则。
关键理解:
- 学习模式:通过算法分析数据,发现隐藏规律或模式
- 核心目标:建立模型(Model),使机器能基于新数据做出预测或决策
- 典型流程:数据收集 → 特征工程 → 模型训练 → 评估优化 → 部署应用
类比理解:
想象教孩子认水果:
- 传统编程:需详细描述“苹果是圆的、红的…”(人工定义规则)
- 机器学习:给孩子看100张水果图片并标注名称,让他自己总结规律(从数据中学习)
常用算法举例:
二、深度学习:机器学习的“高能进化体”
定义核心:深度学习(Deep Learning, DL)是机器学习的一个子领域,其核心是使用深层神经网络(模仿人脑神经元结构)自动学习数据的多层次抽象表示。
突破性优势:
- 自动特征提取:传统ML需人工设计特征(如“图片边缘”),DL直接从原始数据学习高级特征
- 处理非结构化数据:在图像、语音、文本等领域表现远超传统算法
- 层次化认知:浅层网络学边缘→中层学部件→深层学整体(如:人脸识别中从像素到五官再到完整人脸)
技术里程碑:
三、大模型:深度学习的“超级形态”
定义核心:大模型(Large Language Models, LLMs 或 Foundation Models)指参数量巨大(通常十亿级以上)、在海量无标注数据上预训练、能通过微调适应多种任务的深度学习模型。
关键特征:
- 规模效应:参数量越大,表现常呈指数级提升(如GPT-3有1750亿参数)
- 预训练+微调范式:
# 伪代码示意大模型使用流程 model = load_pretrained_model("LLM") # 加载预训练大模型(如ChatGPT底座) fine_tune(model, domain_specific_data) # 用垂直领域数据微调 deploy(model, "智能客服") # 部署为具体应用
- 涌现能力:模型大到一定程度时,突然获得小模型不具备的能力(如复杂推理、代码生成)
典型代表:
模型名称 | 发布方 | 参数量 | 标志能力 |
---|---|---|---|
GPT-4 | OpenAI | ~1.8万亿 | 多模态理解、复杂推理 |
Gemini | 万亿级 | 多模态无缝交互 | |
Claude 3 | Anthropic | 千亿级 | 长文本处理 |
四、三者关系:层层递进的AI技术栈
逻辑全景图:
核心区别对照表:
维度 | 机器学习 (ML) | 深度学习 (DL) | 大模型 (LLM) |
---|---|---|---|
定位 | 广义学习算法 | ML的子集,使用深度网络 | DL的规模化产物 |
数据需求 | 可小规模,依赖特征工程 | 需要较大规模数据 | 需海量无标注文本 |
特征处理 | 人工设计特征 | 自动学习分层特征 | 全自动特征构建 |
应用场景 | 预测分析、推荐系统 | 图像识别、语音处理 | 对话、创作、代码生成 |
案例 | 银行风控模型 | 人脸识别门禁 | ChatGPT聊天机器人 |
结语:理解层级,掌握AI话语权
机器学习是根基,赋予机器“学习”的通用能力;深度学习通过神经网络实现“直觉感知”;而大模型则在巨量参数中涌现“类人思维”。三者并非取代关系,而是构成AI发展的螺旋阶梯。
正如深度学习先驱Yann LeCun所说:“深度学习的魅力在于,它用简单的数学单元,通过层次组合逼近了世界的复杂。” 而大模型正在此基础上,重新定义人机协作的疆界。
掌握这一认知框架,你将拥有:
- 辨析技术新闻的“火眼金睛”
- 与工程师对话的“共同语言”
- 规划AI学习的“精准地图”
人工智能的进化不会止步,但看透本质的思维,永远是你最强大的模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。