对抗样本(论文解读一): DPATCH: An Adversarial Patch Attack on Object Detectors


准备写一个论文学习专栏,先以对抗样本相关为主,后期可能会涉及到目标检测相关领域。

内容不是纯翻译,包括自己的一些注解和总结,论文的结构、组织及相关描述,以及一些英语句子和相关工作的摘抄(可以用于相关领域论文的写作及扩展)。

平时只是阅读论文,有很多知识意识不到,当你真正去着手写的时候,发现写完之后可能只有自己明白做了个啥。包括从组织、结构、描述上等等很多方面都具有很多问题。另一个是对于专业术语、修饰、语言等相关的使用,也有很多需要注意和借鉴的地方。

本专栏希望在学习总结论文核心方法、思想的同时,期望也可以学习和掌握到更多论文本身上的内容,不论是为自己还有大家,尽可能提供更多可以学习的东西。

当然,对于只是关心论文核心思想、方法的,可以只关注摘要、方法及加粗部分内容,或者留言共同学习。


**

DPATCH:An Adversarial Patch Attack on Object Detectors

**

XinLiu1,HuanruiYang1,ZiweiLiu2,LinghaoSong1,HaiLi1,YiranChen1
1Duke University, 2The Chinese University of Hong Kong
1{xin.liu4, huanrui.yang, linghao.song, hai.li, yiran.chen}@duke.edu, 2zwliu.hust@gmail.com

发表:AAAI 2019

针对目标检测的对抗块攻击

1 摘要:

提出了一个针对主流目标检测器(Faster R-CNN和YOLO)的基于对抗块的黑盒攻击-----DPATCH.

Compared to prior works, DPATCH has several appealing properties:

(1)可以实现无目标及有目标的攻击,分别将原始Faster R-CNN和YOLO的mAP由75.10%和65.7%降到1%以下;
(2)块的尺寸非常小且攻击效果与安放位置无关;
(3)对于不同的检测器和训练数据集具有强转移性
(DPATCH demonstrates great transferability among different detectors as well as training datasets).如基于Faster R-CNN训练的生成的对抗块对于YOLO也具有有效的攻击,反之亦然(and vice versa).

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值