Link:http://lx.lanqiao.org/problem.page?gpid=T73
算法训练 拦截导弹
时间限制:1.0s 内存限制:256.0MB
问题描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
一行,为导弹依次飞来的高度
输出格式
两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数
样例输入
389 207 155 300 299 170 158 65
样例输出
6
2
2
编程思想:动态规划求最长非递增子序列和最长严格递增子序列。
AC code:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
int dp1[30003],dp2[30003],h[30003];
int ans1,ans2;
void solve(int n)
{
ans1=0;
for(int i=1;i<=n;i++) dp1[i]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(h[i]<=h[j]&&dp1[i]<dp1[j]+1)
{
dp1[i]=dp1[j]+1;
}
}
if(ans1<dp1[i])
ans1=dp1[i];
}
printf("%d\n",ans1);
ans2=0;
for(int i=1;i<=n;i++) dp2[i]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(h[j]<h[i]&&dp2[i]<dp2[j]+1)
{
dp2[i]=dp2[j]+1;
}
}
if(ans2<dp2[i]) ans2=dp2[i];
}
printf("%d\n",ans2);
}
int main()
{
int n,i;
char ch;
n=0;
while(1)
{
n++;
scanf("%d",&h[n]);
ch=getchar();
if(ch=='\n') break;
}
solve(n);
return 0;
}