【数学建模】商人随从过河的一般模型

题目

三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自已划行,随从们密约,在河的任一岸,一旦随从的人数比商人多就杀人越货。但是如果乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?又若四名商人各带一个随从过河,商人如何才能安全渡河?一般地,有 n n n名商人带 n n n个随从过河,船每次能渡 k k k人过河,试讨论商人能安全过河时, n n n k k k应满足什么条件?

模型假设

  • 小船总能正常工作,且过河过程中不会出现意外情况;
  • 随从总是听从商人的安排;
  • 小船返回时,必须有至少一人操作。

模型建立

S i = { a , b } S_i = \{a,b\} Si={ a,b}为执行第 k k k次决策后出发岸的状态,其中 a , b a,b a,b分别表示商人和随从的人数, 0 ≤ a ≤ n , 0 ≤ b ≤ n 0\leq a\leq n, 0\leq b\leq n 0an,0bn。容易知道在执行第 i i i次决策后,目的岸的状态为 S i ′ = { n − a , n − b } , S 0 ′ = { 0 , 0 } S'_i = \{n-a, n-b\},S'_0 = \{0,0\} Si={ na,nb},S0={ 0,0}。则对状态的约束为
{ a ≥ b n − a ≥ n − b (1) \left\{\begin{aligned} a &\geq b \\ n-a &\geq n-b \end{aligned}\right. \tag{1} { anabnb(1)

{ S i = { n , b }   ∣   b = 1 , 2 , 3 } ∪ { S i = { 0 , b }   ∣   b = 1 , 2 , 3 } (2) \{S_i=\{n,b\}\ |\ b = 1,2,3\} \cup \{S_i=\{0,b\}\ |\ b = 1,2,3\} \tag{2} { Si={ n,b}  b=1,2,3}{ Si={ 0,b}  b=1,2,3}(2)
(1)式表示在任意岸边,商人数量必须大于随从数量,解得 { S i = { a , b }   ∣   a = b } \{S_i=\{a,b\}\ |\ a=b\} { Si={ a,b}  a=b}。(2)式表明某一岸上只有随从而没有商人,随从无法越货。因此所有允许的状态集为
S = { S i = { n , b }   ∣   b = 1 , 2 , 3 } ∪ { S i = { 0 , b }   ∣   b = 1 , 2 , 3 } ∪ { S i = { a , b }   ∣   a = b } (3) \mathscr{S} = \{S_i=\{n,b\}\ |\ b = 1,2,3\} \cup \{S_i=\{0,b\}\ |\ b = 1,2,3\} \cup \{S_i=\{a,b\}\ |\ a=b\} \tag{3} S={ Si={ n,b}  b=1,2,3}{ Si={ 0,b}  b=1,2,3}{ Si={ a,b}  a=b}(3)
特别地,初始时状态 S 0 = { n , n } S_0 = \{n, n\} S0={ n,n},所有人过河完成的终止状态为 S 2 N + 1 = { 0 , 0 } S_{2N+1} = \{0,0\} S2N+1

### 商人过河问题分析 商人过河问题是经典的多步决策优化问题之一,其中涉及到4商人4随从试图通过一条河流到达对岸。该问题的核心在于确保任何时刻商人的数量都不少于随从的数量,除非双方都在同一岸边。 #### 数学建模与计算机实现 在数学上,这个问题被定义为一系列的状态转移过程[^1]。每一个状态可以用两岸的人数分布来表示,而每一次移动则对应着一次合法的状态变化。为了使这一过程自动化并找到解决方案,通常会采用编程手段进行模拟求解。 对于C++而言,可以通过构建一个广度优先搜索(BFS)算法框架来进行探索;而在MATLAB环境下,则可能更倾向于使用动态规划或者回溯法等策略去尝试解决问题[^3]。然而值得注意的是,并不是所有的初始条件都能保证存在可行路径让所有人成功抵达彼岸——当特定参数组合下(比如四个商人各自带着一名随从),可能会遇到无法完成的任务情形[^4]。 ```cpp // C++ BFS 实现片段 #include <queue> struct State { int merchants_left; int followers_left; }; bool isSafe(int m, int f){ return (m == 0 || m >= f); } void bfs(){ std::queue<State> q; // 初始化起始状态... } ``` #### 对现有模型的反思 当前模型主要依赖于严格的约束条件来防止不安全的情况发生,但这同时也意味着一旦这些预设的比例关系遭到破坏,整个方案就变得不可行了。此外,现有的大多数实现方式往往只关注如何寻找一种有效的过渡序列,却忽略了实际操作中的其他因素影响,例如时间成本、资源消耗等问题。 #### 潜在改进方向 针对上述局限性,可以从以下几个方面着手改善: - **引入灵活性机制**:允许一定程度内的违规行为作为临时措施,只要最终能够恢复到正常比例即可; - **增强鲁棒性设计**:考虑到现实生活中可能出现的各种意外状况,应该使得算法具备更强健的能力应对不确定性事件的发生; - **优化性能表现**:利用启发式搜索或者其他高级技术减少不必要的计算量,提高效率的同时也降低了复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值