【数学建模】 一张四条腿一样长的正方形椅子放在不平的地面上,证明存在一种放法使该椅子的四条腿能同时着地。若椅子为长方形,结论有何变化?

题目

一张四条腿一样长的正方形椅子放在不平的地面上,证明存在一种放法使该椅子的四条腿能同时着地。若椅子为长方形,结论有何变化?

模型假设

  1. 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形;
  2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面;
  3. 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地。

模型建立

如果结论成立,那么正方形椅子四条腿能同时着地与地面曲面的形状无关,我们只需要考虑椅子本身摆放方式即可。

设椅脚的连线为正方形 A B C D ABCD ABCD,对角线 A C AC AC x x x轴重合,坐标原点 O O O在椅子中心,当椅子绕 O O O点顺时针或逆时针旋转后,对角线 A C AC AC变为 A ′ C ′ A'C' AC,旋转角度 θ ∈ [ 0 , 2 π ) \theta \in [0, 2\pi) θ[0,2π)

由于正方形的中心对称性,只要设两个距离函数就行了,记 A , C A,C A,C两脚与地面距离之和为 f ( θ ) f(\theta) f(θ) B , D B,D B,D两脚与地面距离之和为 g ( θ ) g(\theta) g(θ)。显然 f ( θ ) ≥ 0 , g ( θ ) ≥ 0 f(\theta)\geq 0, g(\theta)\geq 0 f(θ)0,g(θ)0

由假设2°, f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为连续函数,因此 h ( θ ) h(\theta) h(θ)也是连续函数;由假设3°,得: f ( θ ) g ( θ ) = 0 f(\theta)g(\theta)=0 f(θ)g(θ)=0。则该问题归结为:

已知连续函数 f ( θ ) ≥ 0 , g ( θ ) ≥ 0 f(\theta)\geq 0, g(\theta)\geq 0 f(θ)0,g(θ)0 f ( θ ) g ( θ ) = 0 f(\theta)g(\theta)=0 f(θ)g(θ)=0,至少存在一个 θ 0 \theta_0 θ0,使得:
f ( θ 0 ) = g ( θ 0 ) = 0 f(\theta_0) = g(\theta_0) = 0 f(θ0)=g(θ0)=0

模型求解

不妨设 θ = 0 θ=0 θ=0 A , B , C A,B,C A,B,C三角同时着地,且此时 f ( 0 ) = 0 , g ( 0 ) > 0 f(0)=0,g(0)>0 f(0)=0,g(0)>0。则当 θ = π / 2 \theta = \pi/2 θ=π/2时( A ′ C ′ A'C' AC B D BD BD重合), f ( π / 2 ) > 0 , g ( π / 2 ) = 0 f(\pi/2) > 0, g(\pi/2) = 0 f(π/2)>0,g(π/2)=0

H ( θ ) = f ( θ ) − g ( θ ) H(θ) = f(\theta) - g(\theta) H(θ)=f(θ)g(θ),显然 H ( θ ) H(θ) H(θ)为连续函数,于是 H ( 0 ) < 0 , H ( π / 2 ) > 0 H(0) < 0, H(\pi/2) > 0 H(0)<0,H(π/2)>0,由零点定理可知存在 θ 0 ∈ ( 0 , π / 2 ) \theta_0 \in (0, \pi/2) θ0(0,π/2)使得 H ( θ 0 ) = 0 H(\theta_0) = 0 H(θ0)=0,即 f ( θ 0 ) = g ( θ 0 ) f(\theta_0) = g(\theta_0) f(θ0)=g(θ0),又因为 f ( θ ) g ( θ ) = 0 f(\theta)g(\theta)=0 f(θ)g(θ)=0,所以 f ( θ 0 ) = g ( θ 0 ) = 0 f(\theta_0) = g(\theta_0) = 0 f(θ0)=g(θ0)=0

综上所述,至少存在一种放法使该椅子的四条腿能同时着地。

模型推广

当我们考虑长方形 A B C D ABCD ABCD椅子时,上述推导不可用,因为当 A C AC AC旋转至与 B D BD BD重合时,椅子四脚的位置已不再与初始情况相同。

我们可以设 d ( θ ) d(\theta) d(θ)为某一点到地面的距离,由于曲面是连续的, d ( θ ) d(\theta) d(θ)也应该是连续的,且 d ( θ ) > 0 d(\theta)>0 d(θ)>0,此时, f ( θ ) = d A ( θ ) + d C ( θ ) , g ( θ ) = d B ( θ ) + d D ( θ ) f(\theta) = d_A(\theta)+d_C(\theta),g(\theta) = d_B(\theta)+d_D(\theta) f(θ)=dA(θ)+dC(θ),g(θ)=dB(θ)+dD(θ),不妨仍然设 θ = 0 θ=0 θ=0 A , B , C A,B,C A,B,C三角同时着地,且此时 f ( 0 ) = 0 , g ( 0 ) > 0 f(0)=0,g(0)>0 f(0)=0,g(0)>0,具体地, d A ( 0 ) = d B ( 0 ) = d C ( 0 ) = 0 , d D ( 0 ) > 0 d_A(0)=d_B(0)=d_C(0)=0,d_D(0) > 0 dA(0)=dB(0)=dC(0)=0,dD(0)>0

如果在矩形旋转过程中出现 f ( θ ′ ) > 0 , g ( θ ′ ) = 0 f(\theta')>0,g(\theta')=0 f(θ)>0,g(θ)=0,这种情况与正方形模型一致。

由于函数的连续性,我们可知当 f ( θ ) = 0 , g ( θ ) > 0 f(\theta)=0,g(\theta)>0 f(θ)=0,g(θ)>0不成立时,必有 f ( θ ) > 0 , g ( θ ) = 0 f(\theta)>0,g(\theta)=0 f(θ)>0,g(θ)=0 f ( θ ) = g ( θ ) = 0 f(\theta)=g(\theta)=0 f(θ)=g(θ)=0,这两种情况都能证明结论。因此,我们只需要讨论在旋转过程中是否一直有 f ( θ ) = 0 , g ( θ ) > 0 f(\theta)=0,g(\theta)>0 f(θ)=0,g(θ)>0

假设 f ( θ ) = 0 , g ( θ ) > 0 f(\theta)=0,g(\theta)>0 f(θ)=0,g(θ)>0对于 θ ∈ [ 0 , 2 π ) \theta \in [0, 2\pi) θ[0,2π)都成立,则有 d A ( θ ) + d C ( θ ) = 0 , d B ( θ ) + d D ( θ ) > 0 d_A(\theta)+d_C(\theta) = 0, d_B(\theta)+d_D(\theta) > 0 dA(θ)+dC(θ)=0,dB(θ)+dD(θ)>0,由于假设3°, d A ( θ ) = d C ( θ ) = 0 , d B ( θ ) d D ( θ ) = 0 d_A(\theta)=d_C(\theta)=0, d_B(\theta)d_D(\theta) = 0 dA(θ)=dC(θ)=0,dB(θ)dD(θ)=0。当 θ = 0 \theta = 0 θ=0时, d B ( 0 ) = 0 , d D ( 0 ) > 0 d_B(0)=0,d_D(0) > 0 dB(0)=0,dD(0)>0,此时我们考虑当 θ = π \theta = \pi θ=π时情况,由于矩形的中心对称性,此时 B B B D D D交换位置,且矩形摆放位置与初始位置相同,于是有 d B ( π ) > 0 , d D ( π ) = 0 d_B(\pi)>0,d_D(\pi) = 0 dB(π)>0,dD(π)=0,在这种情况下,不可能同时存在连续的 d C ( θ ) , d D ( θ ) d_C(\theta),d_D(\theta) dC(θ),dD(θ)满足 d B ( θ ) d D ( θ ) = 0 d_B(\theta)d_D(\theta) = 0 dB(θ)dD(θ)=0,且 d B ( θ ) > 0 , d D ( θ ) > 0 d_B(\theta)>0,d_D(\theta)>0 dB(θ)>0,dD(θ)>0。于是原假设不成立。

于是,在椅子假设初始状态 f ( 0 ) = 0 , g ( 0 ) > 0 f(0)=0,g(0)>0 f(0)=0,g(0)>0,则旋转过程中必有 f ( θ ) > 0 , g ( θ ) = 0 f(\theta)>0,g(\theta)=0 f(θ)>0,g(θ)=0 f ( θ ) = g ( θ ) = 0 f(\theta)=g(\theta)=0 f(θ)=g(θ)=0情况出现,即至少存在一种放法使该椅子的四条腿能同时着地。

下面是一个使用BRepBuilderAPI_MakeWire类创建五边形的示例程序: ```cpp #include <iostream> #include <TopoDS.hxx> #include <BRepBuilderAPI_MakeVertex.hxx> #include <BRepBuilderAPI_MakeEdge.hxx> #include <BRepBuilderAPI_MakeWire.hxx> #include <BRepPrimAPI_MakePrism.hxx> #include <BRepMesh_IncrementalMesh.hxx> #include <StlAPI_Writer.hxx> int main() { // 创建五个顶点 TopoDS_Vertex v1 = BRepBuilderAPI_MakeVertex(gp_Pnt(0, 0, 0)); TopoDS_Vertex v2 = BRepBuilderAPI_MakeVertex(gp_Pnt(1, 0, 0)); TopoDS_Vertex v3 = BRepBuilderAPI_MakeVertex(gp_Pnt(1, 1, 0)); TopoDS_Vertex v4 = BRepBuilderAPI_MakeVertex(gp_Pnt(0.5, 1.5, 0)); TopoDS_Vertex v5 = BRepBuilderAPI_MakeVertex(gp_Pnt(0, 1, 0)); // 创建五条边 TopoDS_Edge e1 = BRepBuilderAPI_MakeEdge(v1, v2); TopoDS_Edge e2 = BRepBuilderAPI_MakeEdge(v2, v3); TopoDS_Edge e3 = BRepBuilderAPI_MakeEdge(v3, v4); TopoDS_Edge e4 = BRepBuilderAPI_MakeEdge(v4, v5); TopoDS_Edge e5 = BRepBuilderAPI_MakeEdge(v5, v1); // 创建 Wire BRepBuilderAPI_MakeWire wireMaker; wireMaker.Add(e1); wireMaker.Add(e2); wireMaker.Add(e3); wireMaker.Add(e4); wireMaker.Add(e5); TopoDS_Wire wire = wireMaker.Wire(); // 创建面 BRepBuilderAPI_MakeFace faceMaker(wire); // 创建立体 BRepPrimAPI_MakePrism prismMaker(faceMaker.Face(), gp_Vec(0, 0, 1)); TopoDS_Solid solid = prismMaker.Solid(); // 输出 STL 文件 StlAPI_Writer stlWriter; stlWriter.Write(solid, "five_edges.stl"); // 显示网格 BRepMesh_IncrementalMesh mesh(solid, 0.1); mesh.Perform(); return 0; } ``` 这个程序创建了五个顶点,五条边和一个 Wire,然后用 Wire 创建了一个面,用面创建了一个立方体。最后将立方体输出为 STL 文件,并显示网格。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值