数学建模是一个将现实世界的复杂问题转化成数学形式来对问题进行分析和求解的过程。这个过程涉及将实际问题中的复杂因素简化为数学结构,并用数学语言描述这些因素及其相互关系。
引入一个经典问题:长方形(四角连线呈长方形)的椅子是否可以在地面上放稳,数学建模的过程就是需要将其转化成数学形式进行分析和求解,主要分为以下五个步骤。
1.提出问题
首先分析问题,列出问题中涉及的变量,包括适当的单位。经过分析,可以用变量表示椅子的位置,用函数表示椅子四脚与地面的距离,进而用数学语言把问题表达出来.在收集信息时,需要了解的数据有:各院校专业的报录比、推免比例、招生人数、复试情况、考试大纲等。选择院校是一个非常重要的环节,它会决定你的复习状态和心态,所以一定要尽早确定自己的目标院校。
接着模型假设,我们要抛开一些非主干的问题,因此需要对问题做一些假设。模型假设是对问题增加的约束条件,在做模型假设时要考虑假设的合理性和特殊性。例如,不能假设地面时完全水平的或是阶梯,这种假设没有意义。
-
假设椅子的四条腿一样长,椅子腿与地面接触处抽象为一个点,四脚的连线呈长方形。
-
地面高度是连续变化的,沿周围任意方向都不会出现间断 (高度突变),即地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件。
-
对于椅子脚的间距和椅子腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
然后进行数学表达,根据模型假设和涉及的变量将问题数学化,这一步通常要结合考虑我们可能会用到的模型。
当椅脚与地面的竖直距离为零时,椅脚就着地,而当距离大于零时椅脚不着地。假设椅子的四脚记作A,B,C