01字符串 前向动态规划
动态规划 一般理解为动态规划 前向更新 或者 后向回溯 两种规划方向
此题目为前向动态规划更新
给出一个只包含 0 和 1 的 01 串 s ,下标从 1 开始,设第 i 位的价值为 vali ,则价值定义如下:
1. i=1时:val1 = 1
2. i>1时:
2.1 若 si ≠ si-1 , vali = 1
2.2 若 si = si-1 , vali = vali-1 + 1
字符串的价值等于 val1 + val2 + val3 + ... + valn
你可以删除 s 的任意个
字符,问这个串的最大价值是多少。
中间代码段比较混乱, 可以跳过中部代码段到解释。

算法基本特征:
(1) 删除一个连续重复区间时 要么全部删除 要么一个不删;不全部删除的计算结果一定小于一个不删, 不一定小于全部删除。所以最后计算最大值归结为是否保留每一个连续重复的的1 或0, 而不是单个的1 或0.
(2) 我们假设字符串从多个1: (1...1)开始,包含第一个Sequence一定满足:
本文探讨了如何使用前向动态规划解决01串中删除字符以最大化价值的问题。通过分析连续重复区间删除策略,构建递归树结构,揭示了如何根据子序列和数字相同长度来计算最大价值。关键步骤包括保留重复区间的选择、子序列计算和base case设置。
最低0.47元/天 解锁文章
971

被折叠的 条评论
为什么被折叠?



