模型量化 - PTQ简史(一)

本文探讨了随着AI模型规模的增长,如何通过模型量化和剪枝技术来解决计算、存储和能耗问题。重点介绍了OBS剪枝与量化的关系,以及在Transformer模型中的优化,包括从贪心策略到批次量化,以及科列斯基分解在处理大规模计算需求中的应用。
摘要由CSDN通过智能技术生成

精炼模型

随着各类AI模型的高速发展,模型和深度学习系统的体量正在以指数级别逐渐膨胀。越发巨量的计算,存储,能耗等问题让AI从业者们迫不得已寻求对应的解决方案: 如何将巨大的AI模型适配在有

模型量化的一个本质是节约小数点。五年级数学课上,一个重要的问题是确定圆周率3.1415926约到第几位能做到方便估算。GPU等计算硬件同样需要简化小数。节约小数点位可以节省资源,圆周率节约到几位小数可以决定这种估算到底有多准确,模型量化也要面对这样的问题。是否模型量化后精简的模型和原来的模型达到相同的能力,量化-精度平衡

PTQ量化前身-OBS剪枝

模型剪枝是把模型裁剪部分权重的过程。1993年Hassibi 指出由于剪枝一个深度学习模型时造成的错误 Error相对于剪掉的权重w可以被泰勒展开模拟:

当一个神经网络的权重训练到局部最优或者聚合稳定状态时,上式的首项一阶导数即会无线趋近为零,但是第二项二阶导数不会为零,至于高阶导数,在泰勒展开模拟中往往都会被忽略。抹除具体某个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值