1.1 添加自定义样式的表格
matplotlib可以绘制各种各样的图表,以便用户发现数据间的规律。为了更加凸显数据间的规律与特点,便于用户从多元分析的角度深入挖掘数据潜在的含义,可将图表与数据表格结合使用,使用数据表格强调图表某部分的数值。matplotlib中提供了为图表添加数据表格的函数table(),该函数的语法格式如下所示:
table(cellText=None, cellColours=None, cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowloc='left', colLabels=None, colColours=None,
colLoc='center', loc='bottom', bbox=None, edges='closed', **kwargs)
该函数常用参数表示的含义如下:
·cellText:表示表格单元格中的数据,是一个二维列表。
·cellColours:表示单元格的背景颜色。
·cellLoc:表示单元格文本的对齐方式,支持left'、'right'和'center'三种取值,默认值为'right'
·colWidths:表示每列的宽度。
·rowLabels:表示行标题的文本。
·rowColours:表示行标题所在单元格的背景颜色。
·rowLoc:表示行标题的对齐方式。
·colLabels:表示列标题的文本。
·colColours:表示列标题所在单元格的背景颜色。
·colLoc:表示列标题的对齐方式。
·loc:表示表格与绘图区域的对齐方式
2.1 绘制饼图
2.1 导入模块
import matplotlib.pyplot as plt
import numpy as np
2.2 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
2.3 数据准备
kinds = ['面粉', '全麦粉', '酵母', '苹果酱', '鸡蛋', '黄油', '盐', '白糖']
weight = [250, 150, 4, 250, 50, 30, 4, 20]
2.4 绘制饼图
plt.pie(weight, autopct='%3.1f%%')
2.5 添加辅助元素
#添加图例
plt.legend(kinds, loc='upper right', bbox_to_anchor=[2.10, 0.75], ncol=4)
#添加图表
plt.table(cellText=[weight],
cellLoc='center',
colLabels=kinds,rowLabels=['重量(g)'],loc='bottom',
rowColours=['red'],
colColours=['blue','blue','blue','blue','blue','blue','blue','blue'],
cellColours=[['yellow','yellow','yellow','yellow','yellow','yellow','yellow','yellow']],
bbox=[1.15,0.25,0.9,0.25])
plt.show()