【容斥】【CF1900D】Small GCD

题目简述

求解下列式子:
∑ i = 1 n ∑ j = 1 i − 1 ( a i , a j ) × ( n − i ) \sum_{i=1}^n \sum_{j=1}^{i-1} (a_i,a_j)\times(n-i) i=1nj=1i1(ai,aj)×(ni)

n ≤ 8 e 4 , a i ≤ 1 e 5 n≤8e4,a_i≤1e5 n8e4ai1e5

思路1

写反演写魔怔了,所以上来直接一个反演
最后的式子是这样的
∑ i = 1 n ( n − i ) ∑ d ∣ a i ϕ ( d ) c n t d , i \sum_{i=1}^n (n-i) \sum_{d|a_i} \phi(d)cnt_{d,i} i=1n(ni)daiϕ(d)cntd,i
其中 c n t d , i = ∑ j = 1 i − 1 [ d ∣ a j ] cnt_{d,i}=\sum_{j=1}^{i-1}[d|a_j] cntd,i=j=1i1[daj]
显然 i i i 那维可以省略
预处理所有 a i a_i ai 的因数(调和级数),在求答案过程中顺便求 c n t cnt cnt
时间复杂度 O ( m + m l o g m + 128 n ) O(m+mlogm+128n) O(m+mlogm+128n)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+7,inf=2e12;
int phi[N];
bool bz[N];
vector<int> p,D[N];
void init(int n)
{
	phi[1]=1;
	for(int i=2; i<=n; i++)
	{
		if(!bz[i])
		{
			p.push_back(i);
			phi[i]=i-1;
		}
		for(auto x:p)
		{
			if(x*i>n) break;
			bz[x*i]=1;
			if(i%x==0)
			{
				phi[x*i]=phi[i]*x;
				break;
			}
			else
				phi[x*i]=phi[i]*(x-1);
		}
	}
	for(int i=1; i<=n; i++)
	{
		for(int j=i; j<=n; j+=i)
		{
			D[j].push_back(i);
		}
	}
}
void O_o()
{
	int n;
	cin>>n;
	vector<int> a(n+1),cnt(N);
	for(int i=1; i<=n; i++)
	{
		cin>>a[i];
	}
	sort(a.begin()+1,a.end());
	int ans=0;
	for(int i=1; i<=n; i++)
	{
		for(auto d:D[a[i]])
		{
			ans+=(n-i)*phi[d]*cnt[d];
			cnt[d]++;
		}
	}
	cout<<ans<<"\n";
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	cout<<fixed<<setprecision(2);
	int T=1;
	init(100001);
	cin>>T;
	while(T--)
	{
		O_o();
	}
}

思路2(正常做法)

别看到 gcd 就反演,这题明显不用反演。
f d f_d fd g c d gcd gcd d d d ( a i , a j ) (a_i,a_j) (ai,aj) 乘上 ( n − i ) (n-i) (ni) 之和,即
f d = ∑ i = 1 n ∑ j = 1 i − 1 [ ( i , j ) = d ] × ( n − i ) f_d=\sum_{i=1}^n\sum_{j=1}^{i-1} [(i,j)=d]\times(n-i) fd=i=1nj=1i1[(i,j)=d]×(ni)

直接求会有重复的问题,不好求,所以很自然的想到容斥。
g d g_d gd g c d gcd gcd k × d k\times d k×d ( a i , a j ) (a_i,a_j) (ai,aj) 乘上 ( n − i ) (n-i) (ni) 之和,即
g d = ∑ i = 1 n ∑ j = 1 i − 1 [ d ∣ ( i , j ) ] × ( n − i ) g_d=\sum_{i=1}^n\sum_{j=1}^{i-1} [d|(i,j)]\times(n-i) gd=i=1nj=1i1[d(i,j)]×(ni)
那么
f d = g d − ∑ i = d × 2 f i f_d=g_d-\sum_{i=d\times2}f_i fd=gdi=d×2fi
答案就是
a n s = ∑ i = 1 i × f i ans=\sum_{i=1}i\times f_i ans=i=1i×fi

同样需要预处理所有 a i a_i ai 的因数,但不需要线性筛,时间复杂度是一样的。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+7,inf=2e12;
vector<int> p,D[N];
void init(int n)
{
	for(int i=1; i<=n; i++)
	{
		for(int j=i; j<=n; j+=i)
		{
			D[j].push_back(i);
		}
	}
}
void O_o()
{
	int n;
	cin>>n;
	vector<int> a(n+1),cnt(N),dp(N);//dp[i]: gcd 为 i 的倍数的贡献 
	for(int i=1; i<=n; i++)
	{
		cin>>a[i];
	}
	sort(a.begin()+1,a.end());
	int ans=0;
	for(int i=1; i<=n; i++)
	{
		for(auto d:D[a[i]])
		{
			dp[d]+=cnt[d]*(n-i);
			cnt[d]++;
		}
	}
	//通过容斥,把 dp[i] 变成 gcd 为 i 的贡献 
	for(int i=N-6; i>=1; i--)
	{
		for(int j=i*2; j<=N-6; j+=i)
		{
			dp[i]-=dp[j];
		}
		ans+=i*dp[i];
	}
	cout<<ans<<"\n";
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	cout<<fixed<<setprecision(2);
	int T=1;
	init(100001);
	cin>>T;
	while(T--)
	{
		O_o();
	}
}
  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值