Description
鸡腿是CZYZ的著名DS,但是不想追妹子的DS不是好GFS,所以鸡腿想通过表白来达到他追到妹子的目的!虽然你对鸡腿很无语,但是故事的设定是你帮助鸡腿找到了妹子,所以现在你必须帮助鸡腿安排表白来实现故事的结局 !
鸡腿想到了一个很高(sha)明(bi)的做法,那就是去找人来组成表白队伍来增强气势 !鸡腿有很多好基友来帮忙,鸡腿数了数一共有N个人。但是鸡腿觉得大家排成两队来比较好看,而且鸡腿经过计算,第一队N1个人,第二队N2个人是最佳的队伍。问题来了…有些好基友们虽然很好心但是可能造成不好的影响(形象猥琐),所以鸡腿就给每个人打了分。Q1i表示第i个好基友排到第一队里时的好影响,C1i表示第i个好基友排到第一队里时的不良影响,Q2i表示第i个好基友排到第二队里时的好影响,C2i表示第i个好基友排到第二队里时的不良影响。请给鸡腿一种安排使得Q的和与C的和的比值最大,给出最大值。
Input
第一行给出三个整数N、N1、N2。
第2到N+1行,每行四个整数Q1,C1,Q2,C2。
Output
一行输出一个小数d表示最优化比例是d(保留6位小数)
Sample Input
5 2 2
12 5 8 3
9 4 9 4
7 3 16 6
11 5 7 5
18 10 6 3
Sample Output
2.444444
Data Constraint
对于50%的数据0 < N1 + N2 ≤ N ≤ 50;
对于100%的数据0 < N1 + N2 ≤ N ≤ 500,1 ≤ Q1, Q2 ≤ 2000,1 ≤ C1, C2 ≤ 50。
思路
二分答案+DP
首先,我们很难一下得到答案,所以,我们考虑小数二分。
设答案为t,则
∑(each k in Queue1)Q1k+∑(each k in Queue2)Q2k
————————————————————————- >=t
∑(each k in Queue1)C1k+∑(each k in Queue2)C2k
移项之后
∑(each k in Queue1)(Q1k-C1k*t) +∑(each k in Queue2)(Q2k-C2k*t)>=0
那么我们二分t 之后可以得到每个人的两个参数Q1i-C1i*t 以及Q2i-C2i*t
采取最科学合理的方式安排人手即可。对于小数据我们可以采用O(N^3)的动态规划,即f[i][j][k] 表示前i 个人中挑了j 个人到第一队,挑了k个人到第二队,转移方程是显而易见的。
但这样会TLE
我们发现,对N1+N2个人,我们只考虑如何安排这些人时,我们一定可以按照他们的(Q1i-C1i*t)-(Q2i-C2i*t)排序之后进行选择。同样的,我们对N个人先进行排序之后,用f[i][j] 表示前i 个人取了j 个进第一队,用g[i][j] 表示后i 个人取了j 个进第二队,最后用f[i][N1] +g[N-i][N2]来更新答案即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const double e=1e-9;
const int maxn=677;
struct B
{
double x1,x2,s;
}b[maxn];
struct A
{
int q1,q2,c1,c2;
}a[maxn];
double f[maxn][maxn],g[maxn][maxn];
int n,n1,n2;
int cmp(B x,B y)
{
return x.s>y.s;
}
double fin(double l,double r)
{
if(r-l<e) return l;
double t=(double)(l+r)/2,i=l,j=r;
for(int i=1; i<=n; i++)
{
b[i].x1=(double)a[i].q1-a[i].c1*t;
b[i].x2=(double)a[i].q2-a[i].c2*t;
b[i].s=b[i].x1-b[i].x2;
}
sort(b+1,b+n+1,cmp);
memset(f,200,sizeof(f));
memset(g,200,sizeof(g));
f[0][0]=0; g[0][0]=0;
for(int i=1; i<=n; i++)
{
f[i][0]=0;
for(int j=1; j<=min(n1,i); j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1]+b[i].x1);
}
for(int i=n; i>=1; i--)
{
g[n-i+1][0]=0;
for(int j=1; j<=min(n2,n-i+1); j++)
g[n-i+1][j]=max(g[n-i][j],g[n-i][j-1]+b[i].x2);
}
for(int i=n1; i<=n-n2; i++) if(f[i][n1]+g[n-i][n2]>=0) return fin(t,r);
return fin(l,t-e);
}
int main()
{
freopen("love.in","r",stdin); freopen("love.out","w",stdout);
scanf("%d%d%d",&n,&n1,&n2);
for(int i=1; i<=n; i++) scanf("%d%d%d%d",&a[i].q1,&a[i].c1,&a[i].q2,&a[i].c2);
printf("%.6lf",fin(0.01,2000));
}