《动手学习深度学习》之六:刷分作业FashionMNIST数据集分类-打卡4

FashionMNIST分类

首先确认了数据集的图片shape均为:1x28x28,大多数数据集的图片尺寸是不一的,但FashionMNIST是固定的,这省下了很多清洗的工作;然后选择一个模型作为baseline,根据数据集的这样一个规模以及分辨率,肯定不适合用大模型,层数打算控制在20以内,所以我打算尝试一下resnet18作为baseline,然后使用图像增广和批量归一化来改善模型性能。

1.导入包和模块

import os
import sys
import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision
from torchvision import transforms

# os.environ["CUDA_VISIBLE_DEVICES"] = "7"  # TODO:如果有GPU的话使用

2.定义模型函数

定义全局平均池化层:

class GlobalAvgPool2d(nn.Module):
    """
    全局平均池化层
    可通过将普通的平均池化的窗口形状设置成输入的高和宽实现
    """

    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()

    def forward(self, x):
        return F.avg_pool2d(x, kernel_size=x.size()[2:])


class FlattenLayer(torch.nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):  # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

定义残差block(使用BN归一化):

class Residual(nn.Module):
    def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
        """
            use_1×1conv: 是否使用额外的1x1卷积层来修改通道数
            stride: 卷积层的步幅, resnet使用步长为2的卷积来替代pooling的作用,是个很赞的idea
        """
        super(Residual, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        return F.relu
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值