Perplexity在国内能用吗?最新实测告诉你真相!

这两年AI工具发展得实在太快了,各种新玩意儿层出不穷。写作用ChatGPT、画图用Midjourney、总结资料用Claude...就连我们最熟悉的"搜索"功能,现在也有了新玩法。最近一个叫Perplexity.ai的AI搜索工具在海外论坛上特别火,它不仅能联网查资料,还能自动标注参考文献链接。很多朋友都在问:这玩意儿在国内能用吗?作为一个深度用户,今天就跟大家分享下我的真实体验。

先说说我的使用感受:整体来说确实好用,但需要一些小技巧Perplexity才能在国内流畅使用。下面就从六个方面给大家详细介绍一下。

一、什么是 Perplexity?

Perplexity是个"会思考的搜索引擎"。它既不像传统搜索引擎那样只给链接,也不像ChatGPT那样天马行空。你问它问题,它会给出一段结构清晰的回答,并且贴心地把参考链接都标注好。

举个例子:
问"2025年有哪些AI写作工具推荐?"
或者"AI prompt写手的真实收入情况如何?"
它不会给你一堆需要自己筛选的网页链接,而是直接给出整理好的答案,每个观点都有据可查。

二、Perplexity在国内能用吗?

Perplexity在国内可以用的,但有个前提:需要准备加速器。否则可能会遇到卡顿、加载失败等问题。如果你已经受够了百度的广告,又嫌ChatGPT不能联网,Perplexity确实是个不错的折中选择。

个人建议两种方法:

  1. 准备个靠谱的加速器
    既然要用海外AI工具,加速器就是刚需。建议选择知名服务商,稳定性更重要。

  2. 谨慎使用镜像网站
    网上有些所谓的"国内镜像",建议别轻易尝试。你输入的内容、生成的答案都可能被收集,安全起见还是走正规渠道。

三、Perplexity 和 ChatGPT有什么区别?

Perplexity和ChatGPT虽然都是基于大语言模型的 AI 工具,但它们的定位、功能和使用场景差别很大。下面是两者的核心区别:

对比维度

Perplexity

ChatGPT

核心定位

AI 搜索引擎(“会聊天的谷歌”)

通用型对话助手/AI写作工具

回答特点

精炼、引用资料、附带来源链接

更创意化、能写故事、脚本、代码等

适合用途

查询信息、学术问答、查资料、快速搜索

写作创作、头脑风暴、翻译、代码、模拟对话

是否免费

有免费版,联网功能可用

有免费版(GPT-3.5),联网需付费

模型能力

GPT-3.5 + GPT-4(Pro版)

GPT-3.5(免费)/ GPT-4(Plus订阅)

中文支持

支持中文,但主要面向英文用户

中文表现优秀,适合日常交流和写作

Perplexity更像是个知识顾问:

擅长查资料、找文献

回答简洁有依据

自动标注来源

适合学术研究、信息核实

ChatGPT则是个创意助手:

能写故事、编代码

适合头脑风暴

可以角色扮演

擅长内容创作

我个人的使用组合是:

查资料用Perplexity,写东西用ChatGPT。比如要写篇行业分析,先用Perplexity搜集数据和报告,再用ChatGPT整理成文,最后人工润色。这样搭配效率特别高。

而且现在也不用自己去注册账号,我是在FamilyPro平台上直接订阅的,目前用着挺稳定,性价比很高。

四、Perplexity的特点是什么?

就我之前的使用经验而言,我觉得Perplexity 真香的 5 个优点:

1.默认联网,信息实时

你不用再纠结“这个AI是不是停留在2023年”。Perplexity 默认就是联网的,你问它的问题,它实时上网爬资料、查文章、扫文献,比ChatGPT Plus那种“联网版”来得更稳定也更快。

举例:你可以问它“2024年AI写作趋势报告”、“最近Meta开源了哪些大模型”,它会立刻调出最新资料 + 链接。

2.自动附引用来源,查得到出处

这一点是它最大的亮点!你问任何问题,它都会在回答底部列出引用网址(像脚注一样),适合写论文、查数据、找权威资料。ChatGPT 要你自己说“请加引用”,而 Perplexity 是 默认“回答 + 附链接”一体。这也让它回答更可信,不会一本正经胡说八道(大语言模型常见毛病)。

3.支持“连续追问”,像极了AI搜索顾问

你可以一问再问,它会“记住你前一个问题”,在上下文里逐步深入。不像传统搜索,每次都是“一问一搜”,你得自己整合答案。

4.免费体验非常有诚意

你可以不登录、直接使用大部分功能,包括联网搜索、追问、查看引用等。不注册照样能爽用,没广告、无打扰、界面干净。当然它也有付费Pro版(用GPT-4、支持文件上传、图像问答等)。我目前用的就是Pro版本,而且拼团的话也很划算。

5.回答更“短、准、快”,适合快速获取知识

ChatGPT 有时候太爱“写作文”,回答又长又绕,Perplexity 就不一样,它的回答风格更像“知识卡片”,简洁有重点,一眼看完还能点进去深挖,这点对于查资料、工作中快速决策特别重要。

五、Perplexity到底值不值得折腾着用?

我觉得Perplexity挺值的,尤其是这几类人:

大学生/研究党:查英文资料时,Perplexity简直是论文狗的福音。

内容创作者:它回答问题的方式,完全可以当成写文章的结构参考。

做跨境/海外营销的人:你能更高效地获取海外一手信息,而不是百度“夹生翻译”版本。

它比 Google 更懂你的问题,又比 ChatGPT 多了真实世界的数据感知力,而且回答可以追溯来源,这点非常赞。

六、Perplexity常见问题

1.Perplexity要登录才能用吗?

不登录也能用基础功能,但登录后可以保存历史、上传文件(Pro版)等。

2.国内能付费开Pro吗?

官方不支持,建议拼团或者找中转平台(比如FamilyPro那种集成服务平台)。

3.它能代替Google吗?

如果你是“查快速答案+带出处”的需求,它能。但如果你要全站点爬信息、比价购物、查八卦……那还是得靠Google。

### 计算困惑度 困惑度是在自然语言处理和机器学习领域中衡量模型预测能力的一个重要指标。该指标反映了模型对于测试数据集的不确定性程度,较低的困惑度意味着更好的模型性能[^1]。 具体而言,在给定一个由词序列组成的语料库的情况下,如果有一个概率模型可以估计这些词语出现的概率,则可以通过下述公式来定义困惑度: \[ \text{Perplexity} = P(w_1, w_2,...,w_n)^{-\frac{1}{n}}= \exp\left(-\frac{\sum_{i=1}^{n}\log(P(w_i|context))}{n}\right)\] 其中 \(P(w_i|context)\) 表示根据上下文条件下的单词\(w_i\) 的概率;而 \(n\) 则代表整个文本中的总词汇数。上述表达式实际上是对所有位置上的负对数似然取平均后再做指数运算的结果。 为了更直观理解如何实现这一过程,下面给出一段Python代码片段用于计算简单N元语法(N-gram)模型的困惑度: ```python import math from collections import defaultdict def calculate_perplexity(test_data, ngram_model): total_log_prob = 0.0 word_count = 0 for sentence in test_data: words = sentence.split() for i in range(len(words)-1): context = tuple(words[max(0,i-n+1):i]) if n>1 else () next_word = words[i+1] prob = ngram_model.get((context,next_word), 1e-8) total_log_prob += math.log(prob, 2) word_count += 1 avg_log_prob = total_log_prob / word_count perplexity = 2 ** (-avg_log_prob) return perplexity ``` 此函数接收两个参数:一个是作为输入的数据集`test_data`(通常是一系列句子),另一个是从训练集中构建好的N-Gram模型`ngram_model`。通过遍历每一个句子并累加各位置上目标字对应的条件概率值,最终得到整体困惑度得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值