剑指Offer: 斐波那契数列

剑指Offer: 斐波那契数列

题目描述

输入一个整数 n ,求斐波那契数列的第 n 项。

假定从0开始,第0项为0。(n<=39)

样例
输入整数 n=5 

返回 5

斐波那契数列是一个整数序列F 点数n = 定义如下递推关系

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2)

F(40) = 102334155

F(39) = 63245986

输入数据范围n<=39, 为了避免整数溢出问题,我们求 F(n)%p 的值, p=10^9+7. 比F(39)大即可

算法1 递归

递归计算的节点个数是 O(2^n)的级别的,存在大量重复计算。

时空分析

时间复杂度分析: 时间复杂度是 O(2^n) ,一秒内大约能算到第三四十项

C++ 代码
const int MOD = 1000000007;
int f(int n)
{
    if (n == 1) 
        return 1;
    else if (n == 0)
        return 0;
    return (f(n - 1) + f(n - 2)) % MOD;
}

算法2 记忆化搜索

开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。

时空分析

开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 n 个状态,计算每个状态的复杂度是 O(1) ,所以时间复杂度是 O(n)
一秒内算 n=10^7 毫无压力,但由于是递归计算,递归层数太多会爆栈,大约只能算到 n=10^5 级别

C++代码
const int N = 100000, MOD = 1000000007;
int a[N];
int f2(int n)
{
    if (a[n]) return a[n];
    if (n == 1) return 1;
    else if (n == 0) return 0;
    a[n] = f2(n - 1) + f2(n - 2);
    a[n] %= MOD;
    return a[n];
}

算法3 递推

开一个大数组,记录每个数的值。用循环递推计算。
总共计算 n 个状态,所以时间复杂度是 O(n)
但需要开一个长度是 n 的数组,内存将成为瓶颈,当 n=10^8时,需要的内存是 4∗10^8/1024/1024≈381MB
分子中乘4是因为C++中 int 类型占4字节

时空分析

总共有 n 个状态,计算每个状态的复杂度是 O(1) ,所以时间复杂度是 O(n)

C++代码
const int N = 100000000, MOD = 1000000007;
int f3(int n)
{
    a[0] = 0;
    a[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        a[i] = a[i - 1] + a[i - 2];
        a[i] %= MOD;
    }
    return a[n];
}

算法4 递归+滚动变量

仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。

时空分析

时间复杂度还是 O(n) ,但空间复杂度变成了 O(1)

C++代码
const int MOD = 1000000007;
int f4(int n)
{
    int x, y, z;
    x = 0;
    y = 1;
    for (int i = 2; i <= n; i ++ )
    {
        z = (x + y) % MOD;
        x = y;
        y = z;
    }
    return z;
}

算法5 矩阵运算 + 快速幂

用算法4我们1秒内最多可以算到 n=10^8 级别,那当 n 更大时该怎么办呢?
可以先利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。

首先我们定义向量
matrix

时空分析

时间复杂度分析:快速幂的时间复杂度是 O(logn) ,所以算法5的时间复杂度也是 O(logn)

C++代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <ctime>

using namespace std;

const int MOD = 1000000007;

void mul(int a[][2], int b[][2], int c[][2])
{
    int temp[][2] = {{0, 0}, {0, 0}};
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
            for (int k = 0; k < 2; k ++ )
            {
                long long x = temp[i][j] + (long long)a[i][k] * b[k][j];
                temp[i][j] = x % MOD;
            }
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
            c[i][j] = temp[i][j];
}


int f_final(long long n)
{
    int x[2] = {1, 0};

    int a[2][2] = {{1, 1}, {1, 0}};

    int res[][2] = {{1, 0}, {0, 1}};
    int t[][2] = {{1, 1}, {1, 0}};
    long long k = n - 1;
    while (k)
    {
        if (k&1) mul(res, t, res);
        mul(t, t, t);
        k >>= 1;
    }

    int c[2] = {0, 0};
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
        {
            long long r = c[i] + (long long)x[j] * res[j][i];
            c[i] = r % MOD;
        }

    return c[0];
}


int main()
{
    long long n ;

    cin >> n;
    cout << f_final(n) << endl;

    return 0;
}

//作者:yxc
//链接:https://www.acwing.com/blog/content/25/
//来源:AcWing
//著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最后一个算法的时间复杂度是 O(logn) ,n 在 long long 范围内都可以在1s内算出来。

Reference

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Erice_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值