LeetCode106. 从中序与后序遍历序列构造二叉树
题目描述
样例根据一棵树的中序遍历与后序遍历构造二叉树
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
算法 递归
递归建立整棵二叉树:先递归创建左右子树,然后创建根节点,并让指针指向两棵子树。
- 先利用后序遍历找根节点:后序遍历的倒数第一个数,就是根节点的值
- 在中序遍历中找到根节点的位置 k,则 k 左边是左子树的中序遍历,右边是右子树的中序遍历
- 假设左子树的中序遍历的长度是 L,则在后序遍历中,根节点后面的 L 个数,是左子树的后序遍历,剩下的数是右子树的后序遍历
有了左右子树的后序遍历和中序遍历,我们可以先递归创建出左右子树,然后再创建根节点
时空分析
时间复杂度: 我们在初始化时,用 哈希表(unordered_map<int,int>) 记录每个值在中序遍历中的位置,这样我们在递归到每个节点时,在中序遍历中查找根节点位置的操作,只需要 O(1) 的时间。此时,创建每个节点需要的时间是 O(1) ,所以总时间复杂度是 O(n)
空间复杂度: 建立哈希表 O(n)
C++代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int,int> map;
vector<int> post;
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
post = postorder;
int n = inorder.size();
for(int i = 0; i < n; i++)
{
map[inorder[i]] = i;
}
return dfs(0, n-1, 0, n-1);
}
TreeNode* dfs(int il, int ir, int pl, int pr)
{
if (il > ir)
return nullptr;
int k = map[post[pr]] - il;
TreeNode *root = new TreeNode(post[pr]);
root->left = dfs(il, il + k -1, pl, pl+k-1);
root->right = dfs(il+k+1, ir, pl+k, pr-1);
return root;
}
};