2017-08-02@erixhao 技术极客TechBooster
AI 机器学习第二篇 - 非线形回归分析。我们上文深入本质了解了机器学习基础线性回归算法后,本文继续研究非线性回归。
非线性回归在机器学习中并非热点,并且较为小众,且其应用范畴也不如其他广。鉴于此,我们本文也将较为简单的介绍,并不会深入展开。
非线性回归之后,我们会继续经典机器学习算法包括决策树,随机森林,逻辑回归,SVM,以及朴素贝叶斯分类算法,神经网络等介绍, 本文最后会有预览介绍。
目录
回归分析
线性回归
非线性回归
算法分析
非线性分类
线性变换
非线性模型
高斯-牛顿算法
多项式回归
小结
后续机器学习算法预览
1 回归分析
回归分析基本属于统计学范畴,通常是建立在大量观察数据基础上,利用数理统计方法,尝试建立因变量与自变量之间的回归函数关系,其中当只有因变量及一个自变量时,成为一元回归;当涉及两个或者多个自变量时候,成为多元回归;另外,按照自变量与因变量之间的函数表达式是线性还是非线性,分为线性回归和非线性回归。
线性回归
略微回顾一下我们前文的线形回归,简单来说,线性回归就是寻找一条最优的直线来拟合数据(可以扩展到多维),最优则通过数学上的最小二乘原理,有且只有一条直线函数,使得寻找的直线目前给定的函数值与模型预测值之差的平方和最小,即损失函数;当然其具体程序的算法实现则借鉴了数值计算的梯度下降法。