[LOJ#6268] 分拆数 [多项式求ln][多项式exp]

Link
LOJ - https://loj.ac/problem/6268


G ( x ) = ∑ n = 0 ∞ p r ( n ) x n = ∏ k = 1 n ( 1 + x k + x 2 k + ⋯ + x ⌊ n k ⌋ k ) G(x)=\sum\limits_{n=0}^\infty p_r(n)x^n=\prod\limits_{k=1}^{n}(1+x^k+x^{2k}+\cdots+x^{\lfloor\frac{n}{k}\rfloor k}) G(x)=n=0pr(n)xn=k=1n(1+xk+x2k++xknk)
∑ n = 0 ∞ x k n = 1 1 − x k \sum\limits_{n=0}^\infty x^{kn}=\frac{1}{1-x^k} n=0xkn=1xk1
G ( x ) = ∏ k = 1 n 1 1 − x k G(x)=\prod\limits_{k=1}^n\frac{1}{1-x^k} G(x)=k=1n1xk1
ln ⁡ G ( x ) = ∑ k = 1 n − ln ⁡ ( 1 − x k ) \ln G(x)=\sum\limits_{k=1}^n-\ln(1-x^k) lnG(x)=k=1nln(1xk)
ln ⁡ G ( x ) = ∑ k = 1 n ∑ r = 0 ∞ x r k r \ln G(x)=\sum\limits_{k=1}^n\sum\limits_{r=0}^\infty\frac{x^{rk}}{r} lnG(x)=k=1nr=0rxrk
G ( x ) = e A ( x ) G(x)=e^{A(x)} G(x)=eA(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值