Link
LOJ - https://loj.ac/problem/6268
G
(
x
)
=
∑
n
=
0
∞
p
r
(
n
)
x
n
=
∏
k
=
1
n
(
1
+
x
k
+
x
2
k
+
⋯
+
x
⌊
n
k
⌋
k
)
G(x)=\sum\limits_{n=0}^\infty p_r(n)x^n=\prod\limits_{k=1}^{n}(1+x^k+x^{2k}+\cdots+x^{\lfloor\frac{n}{k}\rfloor k})
G(x)=n=0∑∞pr(n)xn=k=1∏n(1+xk+x2k+⋯+x⌊kn⌋k)
∑
n
=
0
∞
x
k
n
=
1
1
−
x
k
\sum\limits_{n=0}^\infty x^{kn}=\frac{1}{1-x^k}
n=0∑∞xkn=1−xk1
G
(
x
)
=
∏
k
=
1
n
1
1
−
x
k
G(x)=\prod\limits_{k=1}^n\frac{1}{1-x^k}
G(x)=k=1∏n1−xk1
ln
G
(
x
)
=
∑
k
=
1
n
−
ln
(
1
−
x
k
)
\ln G(x)=\sum\limits_{k=1}^n-\ln(1-x^k)
lnG(x)=k=1∑n−ln(1−xk)
ln
G
(
x
)
=
∑
k
=
1
n
∑
r
=
0
∞
x
r
k
r
\ln G(x)=\sum\limits_{k=1}^n\sum\limits_{r=0}^\infty\frac{x^{rk}}{r}
lnG(x)=k=1∑nr=0∑∞rxrk
G
(
x
)
=
e
A
(
x
)
G(x)=e^{A(x)}
G(x)=eA(x)