Fibonacci
Time Limit: 1000MS
Memory Limit: 65536K
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
问题分析
lz的第一道矩阵快速幂。
之前lz只知道快速幂,没想到还有矩阵快速幂。
那在这里就先稍微讲一下快速幂。
比如求x^11
11的二进制是1011,我们都知道(X^m)*(X^n) = X^(m+n)。所以同样我们也可以将x^11这样来做。(x^11 = x^8*x^2*x^1 = x^(8+2+1))
int QuickPow(int x,int n)
{
int res = x;
int ans = 1;
while(n)
{
if(n&1)
{
ans = ans * res;
}
res = res*res;
n = n>>1;
}
return ans;
}
求x^n还有一种求法就是二分递归来求。利用x^n = x^(n/2)*x^(n/2) (n为偶数时),x^n = x^(n/2)*x^(n/2)*x(n为奇数时);
具体实现如下
int _pow(int x,int n)
{
if(n==0)
return 1;
if(n==1)
return x;
if(n&1==0)
return _pow(x*x,n/2);
else
return _pow(x*x,n/2)*x;
}
这里再说一下
单位矩阵的定义: n*n的矩阵 Matrix ( i , i )=1; 任何一个矩阵乘以单位矩阵就是它本身 n*单位矩阵=n, 可以把单位矩阵等价为整数1。(单位矩阵用在矩阵快速幂中)
好,稍微了解一下后进人正题。
题意:求斐波那契数列的第n项%10000。
因为数据较大,而且题里给出了斐波那契的矩阵公式
这不就是求这个矩阵A(假设为A)的n次嘛。所以Fn就可以通过A^n来求出。
好,接下来上AC code(^_^)
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int n = 2,md = 10000;
struct Matrix
{
int m[n][n];
};
Matrix mul(Matrix a, Matrix b) //矩阵乘法模板
{
Matrix ans;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
ans.m[i][j] = 0;
for(int k = 0; k < n; k++)
{
ans.m[i][j] += a.m[i][k]*b.m[k][j];
}
ans.m[i][j] %= md;
}
}
return ans;
}
Matrix quickPow(Matrix a, ll b) //快速幂模板(只不过这里是矩阵快速幂)
{
Matrix ans = { //单位矩阵
1,0,
0,1
};
Matrix tmp = a;
while(b) {
if(b&1)
ans = mul(ans,tmp);
tmp = mul(tmp,tmp);
b >>= 1;
}
return ans;
}
int main()
{
ll n;
Matrix a = {
1,1,
1,0
};
while(cin>>n&&n!=-1)
{
Matrix tmp = quickPow(a,n); //a^n
cout<< tmp.m[0][1] << endl; //Fn
}
return 0;
}