爬爬爬山
题解:因为降低山需要花费 l ∗ l l * l l∗l的代价,因此我们可以将这部分花费加到边上。然后跑最短路就好了。
#include<bits/stdc++.h>
#define P pair<LL,int>
typedef long long LL;
using namespace std;
const int N = 2E5+10;
LL dis[N];
priority_queue<P,vector<P>,greater<P> > pq;
vector<P> e[N];
int h[N];
void dijkstra(int s)
{
memset(dis,0x3f,sizeof dis);
pq.push(P(dis[s] = 0,s));
while(!pq.empty()) {
P cur = pq.top();
pq.pop();
int u = cur.second;
LL cost = cur.first;
if(dis[u] < cost) continue;
for(int i = 0; i < e[u].size(); ++i) {
LL w = e[u][i].first;
int v = e[u][i].second;
if(dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.push(P(dis[v],v));
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.in","r",stdin);
#endif
int n,m,k,x,y,z;
scanf("%d%d%d",&n,&m,&k);
for(int i = 0; i < n; ++i) {
scanf("%d",&h[i + 1]);
}
k += h[1];
for(int i = 0; i < m; ++i) {
scanf("%d%d%d",&x,&y,&z);
if(h[x] > k)
e[y].push_back(P(z + 1LL * (h[x] - k) * (h[x] - k), x));
else
e[y].push_back(P(z,x));
if(h[y] > k)
e[x].push_back(P(z + 1LL * (h[y] - k) * (h[y] - k), y));
else
e[x].push_back(P(z,y));
}
dijkstra(1);
cout << dis[n] << endl;
return 0;
}