【备战蓝桥杯-每日打卡】Day 1丨等差数列

该博客介绍了如何解决一道数学题,即在已知等差数列部分项的情况下,找到最短的完整等差数列。博主通过编程实现,利用排序和最小公差来确定数列的公差,并计算出包含所有已知项的最短数列的项数。此问题涉及基础数学和算法应用。
摘要由CSDN通过智能技术生成

【资源限制】
  时间限制:1.0s 内存限制:256.0MB

【问题描述】
  数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一部分的数列,只记得其中N个整数。现在给出这N个整数,小明想知道包含这N个整数的最短的等差数列有几项?

【输入格式】
  输入的第一行包含 一个整数N。
  第二行包含N个整数A1,A2,… ,AN。(注意A1 ~ AN并不一定是按等差数列中的顺序给出)

【输出格式】
  输出一个整数表示答案。

【样例输入】
5
2 6 4 10 20

【样例输出】
10

【样例说明】
  包含2、6、4、10、20的最短的等差数列是2、4、6、8、10、12、 14、 16、18、20。
  
【评测用例规模与约定】
  对于所有评测用例,2≤N≤10000,0≤Ai≤ 109

import java.io.BufferedInputStream;
import java.util.Arrays;
import java.util.Scanner;

public class Main {

		public static void main(String[] args) {
		Scanner in = new Scanner(new BufferedInputStream(System.in));
		int n = in.nextInt();
		int[] arr = new int[n];
		for (int i = 0; i < n; i++) {
			arr[i] = in.nextInt();
		}
		Arrays.sort(arr);  // 将数列排序
		int cha = Integer.MAX_VALUE;  // 公差
		for (int i = 1; i < n; i++) {
			cha = Math.min(cha, arr[i] - arr[i - 1]);  // 利用Math.min求出最小公差值
		}
		if (cha == 0) {
			System.out.println(n);
		}
		int temp = ((arr[n - 1] - arr[0]) / cha) + 1;  // 项数=(末项-首项)/公差+1
		System.out.println(temp);

	}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的小林同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值