自主学习 c语言有关于函数的笔记
第一节 认识函数
维基百科中对函数的定义:子程序
- 在计算机科学中,子程序(英语:Subroutine, procedure, function, routine, method, subprogram, callable unit),是一个大型程序中的某部分代码,由一个或多个语句块组成。它负责完成某项特定任务,而且相较于其他代码,具备相对的独立性。
- 一般会有输入参数并有返回值,提供对过程的封装和细节的隐藏。这些代码通常被集成为软件库。
第二节 C语言中函数的分类
- 库函数
- 自定义函数
2.1 库函数
为什么会有库函数?
- 学习C语言编程的时候,总是在一个代码编写完成之后迫不及待的想知道结果,想把这个结果打印到我们的屏幕上看看。这个时候我们会频繁的使用一个功能:将信息按照一定的格式打正印到屏幕上(printf)
- 在编程的过程中我们会频繁的做一些字符串的拷贝工作(strcpy)
- 在编程是我们也计算,总是会计算n的k次方这样的运算(pow)
像上面我们描述的基础功能,它们不是业务性的代码。我们在开发的过程中每个程序员都可能用的到,为了支持可移植性和提高程序的效率,所以C语言的基础库中提供了一系列类似的库函数,方便程序员进行软件开发。
如何学习库函数?
https://cplusplus.com/reference/
简单的总结,C语言常用的库函数都有:
- IO函数
- 字符串操作函数
- 字符操作函数
- 内存操作函数
- 时间/日期函数
- 数学函数
- 其他库函数
char * strcpy ( char * destination, const char * source );
例子:
#include <stdio.h>
#include <string.h>
int main()
{
char arr1[20] = { 0 };
char arr2[] = "hello world";
strcpy(arr1, arr2);
printf("%s\n", arr1);
}
输出结果:hello world
void * memset ( void * ptr, int value, size_t num );
例子:
#include <stdio.h>
#include <string.h>
int main()
{
//代码1:将前5个字符更改为'x'
char arr[20] = "hello world";
memset(arr, 'x', 5);
printf("%s\n", arr);
//代码2:将'wor'更改为'y'
char arr[20] = "hello world";
memset(arr + 6, 'y', 3);
printf("%s\n", arr);
}
输出结果:
- 代码1:xxxxx world
- 代码2:hello yyyld
注:
- 使用库函数,必须包含
#inclede
对应的头文件。 - 对照文档来学习上面几个库函数,目的是掌握库函数的使用方法。
2.1.1 如何学会使用库函数
学习查询工具的使用:
MSDN(Microsoft Developer Network)
2.2 自定义函数
自定义函数和库函数一样,有函数名、返回值类型和函数参数。
函数的组成:
ret_type fun_name(para1, * )
{
statement; //语句项
}
ret_type 返回类型
fun_name 函数名
para1 函数参数
案例:找出两个整数中的较大值
#include <stdio.h>
//函数的定义
int get_max(int x, int y)
{
return (x > y ? x : y);
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
//求较大值
//函数的调用
int m = get_max(a, b);
printf("%d\n", m);
}
案例:交换两个数值
#include <stdio.h>
//实现成函数,但是不能完成任务。因为对形参的修改不会影响实参
void Swap(int* px, int* py)
{
int tmp = 0;
tmp = x;
y = tmp;
}
//正确的版本
void Swap(int* px, int* py)
{
int z = *px; //z=a
*px = *py; //a=b
*py = z; //b=a
}
//当实参传递给形参的时候,形参是实参的一份临时拷贝
//对形参的修改不会影响实参
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
//交换
printf("交换前:a=%d b=%d\n", a, b);
//a和b:实参
Swap(&a, &b);
printf("交换后:a=%d b=%d\n",a,b);
return 0;
}
注:
- 对形参的修改不会影响实参。
- 若需改变形参的值,则需取地址;若只需获取值,则不需取地址。
第三节 函数的参数
3.1 实际参数(实参)
真实传给函数的参数,叫实参。
实参可以是:常量、变量、表达式、函数等。
无论实参是何种类型的量,在进行函数调用时,它们都必须有确定的值,以便把这些值传给形参。
3.2 形式参数(形参)
形式参数是指函数名后括号中的变量,因为形式参数只有在函数被调用的过程中才实例化(分配内存单元),所以叫形式参数。形式参数当函数调用完成之后就自动销毁了。因此形式参数只在函数中有效。
代码对应的内存分配如下:
Swap1
函数在调用的时候,x
,y
拥有自己的空间,同时拥有了和实参一模一样的内容。
所以可以简单的认为:形参实例化之后其实相当于实参的一份临时拷贝。
第四节 函数的调用
4.1 传值调用
函数的形参和实参分别占有不同内存块,对形参的修改不会影响实参。
4.2 传址调用
- 传址调用是把函数外部创建变量的内存地址传递给函数的一种调用函数的方式。
- 这种传参方式可以让函数和函数外边的变量建立起真正的联系,也就是函数内部可以直接操作函数外部的变量。
4.3 练习
- 写一个函数可以判断一个数是不是素数。
- 写一个函数判断一年是不是闰年。
- 写一个函数,实现一个整型有序数组的二分查找。
- 写一个函数,每调用一次这个函数,就会将
num
的值增加1。
4.3.1.打印100~200之间的素数
素数是只能被1和他本身整除的数。
例如:7若只能被1和7整除则7为素数;简而言之,需判断7能否被2 3 4 5 6整除。
分支循环语句的形式
#include <stdio.h>
int main()
{
int i = 0;
int count = 0;
for (i = 100; i <= 200; i++)
{
//判断i是否为素数
//是素数就打印
//拿2 ~ i-1之间的数字去试除i
int flag = 1; //flag是1,表示是素数
int j = 0;
for (j = 2; j <= i - 1; j++)
{
if (i % j == 0)
{
flag = 0;
break;
}
}
if (flag == 1)
{
count++;
printf("%d\n", i);
}
}
printf("\ncount = %d\n", count);
return 0;
}
优化:
- 判断范围不必到
i-1
,例如:16=2×8=4×4,已经被2整除,就不需要试除8了,是以范围到i的开平方数即可。 - 复数能被2整除,一定不是素数
#include <stdio.h>
#include <math.h>
int main()
{
int i = 0;
int count = 0;
for (i = 101; i <= 200; i+=2)
{
//判断i是否为素数
//是素数就打印
//拿2 ~ i-1之间的数字去试除i
int flag = 1; //flag是1,表示是素数
int j = 0;
for (j = 2; j <= sqrt(i); j++) //sqrt():开平方,是数学库函数,引用<math.h>头文件
{
if (i % j == 0)
{
flag = 0;
break;
}
}
if (flag == 1)
{
count++;
printf("%d\n", i);
}
}
printf("\ncount = %d\n", count);
return 0;
}
sqrt()函数
开平方,是个数学库函数。
函数形式
#include <stdio.h>
#include <math.h>
//is_prime():判断一个数是不是素数的函数
int is_prime(int n)
{
int j = 0;
for (j = 2; j <= sqrt(n); j++)
{
if (n % j == 0)
{
return 0;
}
}
return 1;
}
int main()
{
int i = 0;
int count = 0;
for (i = 101; i <= 200; i += 2)
{
//判断i是否为素数
//是素数就打印
if (is_prime(i))
{
printf("%d\n", i);
count++;
}
}
printf("\ncount = %d\n", count);
return 0;
}
4.3.2.打印1000~2000年之间的闰年
闰年判断的规则:
- 能被4整除,并且不能被100整除是闰年。
- 能被400整除是闰年
分支语句的形式
#include <stdio.h>
int main()
{
int year = 0;
for (year = 1000; year <= 2000; year++)
{
//判断year是不是闰年
if (((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0))
{
printf("%d ", year);
}
}
}
函数形式
#include <stdio.h>
//判断一年是不是闰年
//是闰年返回1
//非闰年返回0
int is_leap_year(int y)
{
if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0))
{
return 1;
}
else
{
return 0;
}
}
int main()
{
int year = 0;
for (year = 1000; year <= 2000; year++)
{
//判断year是不是闰年
if (is_leap_year(year))
{
printf("%d ", year);
}
}
}
4.3.3.写一个函数,实现一个整型有序数组的二分查找
数组传参实际上传递的是数组首元素的地址,而不是整个数组。所以在函数内部计算一个函数参数部分的数组的元素个数是不靠谱的。
#include <stdio.h>
//实现整型有序数组的二分查找的函数
binary_search(int arr[],int k,int sz) //形参arr看上去是数组,本质是指针变量
{
int left = 0;
int right = sz - 1;
while (left <= right)
{
int mid = left + (right - left) / 2;
if (arr[mid] < k)
{
left = mid + 1;
}
else if (arr[mid] > k)
{
right = mid - 1;
}
else
{
return mid;//找到了返回下标
}
}
return -1;//找不到
}
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int k = 7;
int sz = sizeof(arr) / sizeof(arr[0]);
//找到了,返回下标
//找不到,返回-1
int ret = binary_search(arr, k, sz);
if (ret == -1)
{
printf("找不到\n");
}
else
{
printf("找到了,下标是:%d\n", ret);
}
return 0;
}
4.3.4.写一个函数,每调用一次这个函数,就会将num的值增加1
#include <stdio.h>
//每调用一次,就会将num的值增加1的函数
void Add(int* p)
{
(*p)++;
}
int main()
{
int num = 0;
Add(&num);
printf("%d\n", num); //1
Add(&num);
printf("%d\n", num); //2
return 0;
}
第五节 函数的嵌套调用和链式访问
函数和函数之间可以根据实际的需求进行组合的,也就是互相调用的。
5.1 函数嵌套
#include <stdio.h>
void new_line()
{
printf("hehe\n");
}
void three_line()
{
int i = 0;
for (i = 0; i < 3; i++)
{
new_line();
}
}
int main()
{
three_line();
return 0;
}
输出结果:
注意:函数可以嵌套调用,但是不能嵌套定义。
5.2 链式访问
链式访问的前提条件:有返回值
int main()
{
//链式访问
printf("%d", printf("%d", printf("%d", 43)));
return 0;
}
输出结果:
printf的返回值:每个函数返回打印的字符个数,如果发生错误,则返回负值。
printf("%d", 43);
该printf函数返回43,即两个字符;是以printf("%d", printf("%d", 43));
外围printf函数返回2,即一个字符;故printf("%d", printf("%d", printf("%d", 43)));
最外围printf函数返回1。最终输出结果:4321
第六节 函数的声明和定义
6.1 函数声明
- 告诉编译器有一个函数叫什么,参数是什么,返回类型是什么。但是具体是不是存在,函数声明决定不了。
- 函数的声明一般出现在函数的使用之前,要满足先声明后使用。
- 函数的声明一般要放在头文件中的。
int 函数名(参数类型, 参数类型);
//如:
int Add(int, int);
6.2 函数定义
函数的定义是指函数的具体实现,交代函数的功能实现。
int Add(int x, int y)
{
return x + y;
}
**为什么要拆分文件?**在公司中,从协作的角度来看,我们需要将代码模块化:将一个工程分成多个 .h 和 .c 文件。
如何保护开发程序员的代码?
- 编译成二进制的静态库
- 实现的前提条件:将 .h 文件与 .c 文件分开
①创建 一个新的空项目add
②将写好的add.h与add.c文件剪切到新建的add文件中的add夹中
③进入VS,选择添加现有项,将刚刚复制的文件依次添加到头文件、源文件中
④右键 add工程 --> 属性 --> 配置类型:静态库(.lib)–> 应用 --> 确定
⑤ F7 编译代码
⑥成功生成了add.lib文件,将add.lib文件与add.h文件复制到原工程中
⑦返回原工程的解决方案,添加add.h头文件
⑧导入静态库
#pragma comment(lib,"add.lib")
第七节 函数递归
7.1 什么是递归?
程序调用自身的编程技巧称为递归(recursion)
递归作为一种算法在程序设计语言中广泛应用,一个过程或函数在其定义或说明中有直接或间接调用本身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的、规模较小的问题来求解,
递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的主要思考方式在于:把大事化小
7.2 递归的两个必要条件
- 存在限制条件,当满足这个限制条件的时候,递归便不再继续。 (若缺少条件或条件不当则会导致栈溢出:Stack overflow)
- 每次递归调用之后越来越接近这个限定条件。
7.2.1 案例1:(画图理解)
接受一个整型值(无符号),按照顺序打印它的每一位。
例如:
输入1234,输出1 2 3 4
参考代码:
//print(1234)
//print(123) 4
//print(12) 3 4
//print(1) 2 3 4
//1 2 3 4
#include <stdio.h>
void print(unsigned int n)
{
if (n > 9) {
print(n / 10); //123
}
printf("%d ", n % 10); //4
}
int main()
{
unsigned int num = 0; //整型值(无符号)
scanf("%u", &num); //1234
print(num);
}
画图理解:
7.2.2 案例2:(画图理解)
编写函数不允许创建临时变量,求字符串的长度。
参考代码:
//my_strlen("abc");
//1 + my_strlen("bc");
//1 + 1 + my_strlen("c");
//1 + 1 + 1 + my_strlen("");
//1 + 1 + 1 + 0
#include <stdio.h>
int my_strlen(char* str)
{
if (*str != '\0')
return 1 + my_strlen(str + 1);
else
return 0;
}
int main()
{
char arr[] = "abc"; // [a b c \0]
int len = my_strlen(arr); //传的是首字符的地址
printf("%d\n", len);
}
画图理解:
7.3 递归与迭代
7.3.1 案例3:
求n的阶乘。(不考虑溢出)
#include <stdio.h>
//1.递归实现
int fac(int n)
{
if (n <= 1)
return 1;
else
return n * fac(n - 1);
}
//2.迭代的方式-非递归
int fac(int n)
{
int i = 0;
int ret = 1;
for (i = 1; i <= n; i++)
{
ret *= i;
}
return 0;
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = fac(n);
printf("ret = %d\n", ret);
return 0;
}
7.3.2 案例4:
求第n个斐波那契数(不考虑溢出)
参考代码:
//递归实现
int fib(int n)
{
if (n <= 2)
return 1;
else
return fib(n - 1) + fib(n - 2);
}
但是我们发现有问题:
- 在使用
fib
这个函数的时候如果我们要计算第50个斐波那契数字的时候特别耗费时间。 - 使用
factorial
函数求100000的阶乘(不考虑结果的正确性),程序会奔溃。
为什么呢?
- 我们发现
fib
函数在调用的过程中很多计算都在重复。
如果我们把代码修改一下:
int count = 0;//全局变量
int fib(int n)
{
if (n == 3)
count++;
if (n <= 2)
return 1;
else
return fib(n - 1) + fib(n - 2);
}
最后输出的count,是一个很大很大的值。
那应该如何改进呢?
- 在调试
factorial
函数的时候,若参数比较大,那就会报错:stack overflow(栈溢出)
这样的信息。 系统分配给程序的栈空间是有限的,但是如果出现了死循环或者死递归,这样可能导致一直开辟栈空间,最终产生栈空间耗尽的情况,这样的现象我们称为栈溢出。
如何解决上述的问题:
- 将递归改写成非递归。
- 使用
static
对象代替nonstatic
局部对象。在递归函数设计中,可以使用static对象替代nonstatic局部变量(即栈对象),这不仅可以减少每次递归调用和返回时产生和释放nonstatic对象的开销,而且static对象还可以保存递归调用的中间状态,并且可为各个调用层所访问。
比如,下面的代码就采用了 非递归的方式来实现:
//求n的阶乘
int factorial(int n)
{
int result = 1;
while (n > 1)
{
result *= n;
n--;
}
return result;
}
//求第n个斐波那契数
int fib(int n)
{
int result;
int pre_result;
int next_older_result;
result = pre_result = 1;
while(n >= 3)
{
n -= 1;
next_older_result = pre_result;
pre_result = result;
result = pre_result + next_older_result;
}
return result;
}
提示:
- 许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
- 但是这些问题的迭代实现往往比递归实现效率高,但是代码的可读性稍微差些。
- 当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。
函数递归的几个经典题目(自主研究):
- 汉诺塔问题
- 青蛙跳台阶问题
函数的零碎知识点
1.一个工程中,可以有多个.c文件,但是只能由一个main
函数
2.函数不写返回类型的时候,默认返回类型是int(不推荐这样写)
3.函数写了返回类型却没给返回值时,一些编译器返回值为函数中执行的最后一条指令的结果(不推荐)
4.main函数有3个参数
int main(int argc, char* argv[], *envp[])
{
return 0;
}