MULTIVARIATE GAUSSIAN DISTRIBUTION

Multivariate Gaussian Distribution

Maths

This work will present a linear transformation interpretation on the multivariate Gaussian distribution. The entire derivation stems from univariate Gaussian distributions with mean 0 and variance 1.

Recall that the density function of a univariate Gaussian distribution is given by


Therefore, when


we have


Now, suppose we have n independently identically distribution random variables x1, …, xn conforming to univariate Gaussian distributions with mean 0 and variance 1, then the joint density function is


By designing a random vector,


we can re-write the joint density function as


Remarkably, here is the assumption that will lead us to a general case, that is, there exists an invertible mixing matrix and a noise vector mu which contributes to a linear transformation from to X, i.e.,


Problem is, what is density function of X? Here is the derivation. (This requires some advanced linear algebra and probability theory. The relevant proof is on the horizon.)


Letting


we can obtain


where the noise vector mu is the mean of X, since E[X] = E[BZ] + E[mu] = mu, and the n-by-n matrix SIGMA is a symmetric positive semi-definite covariance matrix of X, since



Moreover, since SIGMA is real symmetric, it can be factorized as


where U is a full rank orthogonal matrix containing the eigenvectors of SIGMA as its columns and LAMBDA is a diagonal matrix containing SIGMA’s eigenvalues which are non-negative (since SIGMA is also positive semi-definite).

Defining


to be the diagonal matrix whose entries are the square roots of the corresponding entries from LAMBDA. Noting that


we have


Therefore, the mixing matrix turns out to be


In addition, by inversing the derivation above, we can substantiate the probabilistic standardization of multivariate Gaussian distribution, i.e.,


Proof sketch:

Noting that,


where C is nonsingular, we have,


Substitute CT(X-mu) for Y,


where


we obtain,


Incidentally, the Jacobian determinant plays an essential part in multivariate integral by substitution, geometrically suggesting the value of volume element of an n-dimensional stretched cube composed of a new basis into which the old one is linearly or nonlinearly transformed in Euclidean space.


POSTSCRIPT

Happy birthday to my dear bro, Ryan! Hopefully, one day, you will become an extraordinary mathematician like Johann Carl Friedrich Gauss.

MAY 24th, 2015


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值