CONTOUR OF GAUSSIAN DISTRIBUTION

Contour of Gaussian Distribution

Maths

How much do you know about ellipse especially when I present you with an equation like this,


Chances are that you will fail to obtain an intuitive interpretation on its analytical shape in the two-dimensional Cartesian coordinate.

As a matter of fact, (1) is the general form of an ellipse equation. An ellipse formulated by (1) can be obtained by linear transformation on the standard form (2). And matrix multiplication plays an essential role of this process.


Proof:

Suppose P = (x, y)­­T is the point satisfying (2),  P' = (x',y')­­T is the corresponding point after a series of linear transformations including rotation and shift. Algebraically, rotation transformation is represented by matrix R parameterized by the rotation angle (anti-clockwise), and shift transformation by matrix delta.



Using linear transformation, we have,


Solve for P,


After expansion, we obtain,


Further,


Plug it back to (2),


Finally, we obtain the following general form (*) that P’ conforms to analytically and explicitly,


Apparently, referring to (1),

Consequently, we are done with the proof.

Analysis:

The parameter B in (*) can be regarded as the proof to discriminate whether there exists a rotation in the linear transformation while D and E are to check the existence of a shift.

If a equals to b, equation (*) degenerates to


where the cross term is eliminated. This indicates that, no matter how the pattern is rotated, it stays the same, which only a circle in 2-dimensional plane can achieve.

More properties of (*) can be derived by choosing some particular values.

Those who noticed the topic must now be confused with the irrelevant discussion above. Let me head for the highlight, the elliptical contour of Gaussian distribution.

Given a continuous-valued random variable,


The above figure shows the standard normal distribution (2-dimensional) with mean zero and covariance matrix sigma = I(the 2 by 2 identity matrix).

More generally, to see the contour of the 2-dimensional Gaussian distribution, we make the following assumptions,


To solve for the contour of a Gaussian distribution, we have,


where z0 conforms to z = z0, parallel to the plane xoy and = (x,y)­­T.

Further,


where 


Referring to (*), we arrive at a conclusion that the contour of a Gaussian distribution is an axis-parallel ellipse exactly when 


and is a circle when



The figure above shows an elliptical contour of a 2-dimensional Gaussian distribution with


On the other hand, the mean of a Gaussian distribution, mu, changes the position of the bell-shaped curve surface only.

Acknowledgement

This work has benefited greatly from the discussion with my comrade, C. Huang, who is a graduate-to-be of Peking University. Figures and data are from the handout of Andrew Ng's Coursera, Machine Learning.

Postscript

Inevitably, there might be some mistakes in the above discussion and derivation. I’m looking forward to your opinions and corrections. Thanks.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值