嘿嘿,你有没有想过,初二就学高中内容是什么感受?
区间
闭区间:
[
a
,
b
]
[a,b]
[a,b],表示
{
x
∣
a
≤
x
≤
b
}
\{x|a\leq x\leq b\}
{x∣a≤x≤b}
开区间:
(
a
,
b
)
(a,b)
(a,b),表示
{
x
∣
a
<
x
<
b
}
\{x|a<x<b\}
{x∣a<x<b}
半开半闭区间:
[
a
,
b
)
[a,b)
[a,b),
{
x
∣
a
≤
x
<
b
}
\{x|a \leq x < b\}
{x∣a≤x<b},
(
a
,
b
]
(a,b]
(a,b],
{
x
∣
a
<
x
≤
b
}
\{x|a < x \leq b\}
{x∣a<x≤b}
无限延申区间:
(
−
∞
,
b
)
(-\infty,b)
(−∞,b) 表示
{
x
∣
x
<
b
}
\{x|x < b\}
{x∣x<b},
(
−
∞
,
b
]
(-\infty,b]
(−∞,b] 表示
{
x
∣
x
≤
b
}
\{x|x \leq b\}
{x∣x≤b},
(
a
,
−
∞
)
(a,-\infty)
(a,−∞) 表示
{
x
∣
a
<
x
}
\{x|a<x\}
{x∣a<x},
[
a
,
+
∞
)
[a,+\infty)
[a,+∞) 表示
{
x
∣
a
≤
x
}
\{x|a\leq x\}
{x∣a≤x}
若用上述方法表示集合,则 a , b a,b a,b 称为对应区间的端点。
区间并:
(
a
,
b
)
∪
(
c
,
d
)
(a,b) \cup (c,d)
(a,b)∪(c,d)
区间交:
(
a
,
b
)
∩
(
c
,
d
)
(a,b) \cap (c,d)
(a,b)∩(c,d)
映射
有两个集合 A , B A, B A,B,对于 A A A 中每一个元素,按照对应法则 f f f,都能从 B B B 中找到唯一的元素与之对应,则称 f f f 是 A A A 到 B B B 的一个映射。记为: f : A → B f:A\to B f:A→B
单射:不存在 A A A 中不同元素对应到 B B B 中同一元素。
满射:不存在 B B B 中一个元素没有 A A A 中元素对应。
双射(一一映射):同时满足单射和双射。
复合映射: f : A → B , g : B → C , g ∘ f : A → C f: A\to B,~g:B\to C,~g \circ f: A\to C f:A→B, g:B→C, g∘f:A→C
逆映射: f : A → B , f − 1 : B → A f: A\to B, f^{-1}:B\to A f:A→B,f−1:B→A(需要满足双射)
函数定义
如果集合 A A A 中任意一个数 x x x,按对应法则 f f f,从 B B B 找到唯一元素 y y y 与之对应,且 B B B 中所有元素都存在 A A A 中元素与之对应,则把这个映射称为函数,记作: y = f ( x ) y = f(x) y=f(x)。
其中, x x x 为自变量,取值范围称为函数的定义域, y y y 为因变量,取值范围称为函数的值域。
函数三要素:对应法则,定义域,值域
定义域 + 值域
⇏
\not\rArr
⇒ 对应法则
对应法则 + 值域
⇏
\not\rArr
⇒ 定义域
对应法则 + 定义域
⇒
\rArr
⇒ 值域
函数表示
解析法: y = f ( x ) , x ∈ A y = f(x),x\in A y=f(x),x∈A
列表法:列出两个变量之间关系。
图像法:在图上标出所有 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 点。
复合函数
若存在两个函数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x),其中,
f
(
x
)
f(x)
f(x) 定义域为
A
A
A,值域为
B
B
B,
g
(
x
)
g(x)
g(x) 定义域为
B
B
B,值域为
C
C
C。
两个函数的复合函数为
y
=
g
[
f
(
x
)
]
y=g[f(x)]
y=g[f(x)],也写作
y
=
g
⋅
f
(
x
)
y=g\cdot f(x)
y=g⋅f(x)
复合函数的定义域为
A
A
A,值域为
C
C
C。
复合函数 f ( x + 1 ) f(x+1) f(x+1) 的定义域是 x x x 的取值范围,而不是 x + 1 x+1 x+1 的。
函数的单调性
若函数 f ( x ) f(x) f(x) 定义域为 D D D。
若存在集合 A ⊆ D A \sube D A⊆D,使得对于所有 x 1 ∈ A , x 2 ∈ A x_1\in A,x_2 \in A x1∈A,x2∈A 且 x 1 < x 2 x_1 < x_2 x1<x2,都有 f ( x 1 ) < f ( x 2 ) f(x_1) <f(x_2) f(x1)<f(x2),则 A A A 被称为一个 f ( x ) f(x) f(x) 的单调升区间,或称 f ( x ) f(x) f(x) 在区间 A A A 上是升函数。
若存在集合 A ⊆ D A \sube D A⊆D,使得对于所有 x 1 ∈ A , x 2 ∈ A x_1\in A,x_2 \in A x1∈A,x2∈A 且 x 1 < x 2 x_1 < x_2 x1<x2,都有 f ( x 1 ) > f ( x 2 ) f(x_1) >f(x_2) f(x1)>f(x2),则 A A A 被称为一个 f ( x ) f(x) f(x) 的单调降区间,或称 f ( x ) f(x) f(x) 在区间 A A A 上是降函数。
常见函数的单调性
一次函数: f ( x ) = k x + b f(x)=kx+b f(x)=kx+b
k > 0 k>0 k>0 时,函数单调增, k < 0 k<0 k<0 时,函数单调减。
二次函数: f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c
a
>
0
a>0
a>0时,
(
−
∞
,
−
b
2
a
)
(-\infty,-\frac{b}{2a})
(−∞,−2ab) 单调减,
(
−
b
2
a
,
+
∞
)
(-\frac{b}{2a},+\infty)
(−2ab,+∞)单调增。
a
<
0
a<0
a<0时,
(
−
∞
,
−
b
2
a
)
(-\infty,-\frac{b}{2a})
(−∞,−2ab) 单调增,
(
−
b
2
a
,
+
∞
)
(-\frac{b}{2a},+\infty)
(−2ab,+∞)单调减。
反比例函数: f ( x ) = k x f(x)=\dfrac{k}{x} f(x)=xk
k
>
0
k>0
k>0时,
(
−
∞
,
0
)
(-\infty,0)
(−∞,0) 和
(
0
,
+
∞
)
(0,+\infty)
(0,+∞) 分别单调减。
k
<
0
k<0
k<0时,
(
−
∞
,
0
)
(-\infty,0)
(−∞,0) 和
(
0
,
+
∞
)
(0,+\infty)
(0,+∞) 分别单调增。
复合函数的单调性
有函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x), f ( x ) f(x) f(x) 中有一段区间 A A A, f ( x ) f(x) f(x) 在 A A A 中的值域为 B B B,若 A A A 为 f ( x ) f(x) f(x)的一段单调区间, B B B 为 g ( x ) g(x) g(x) 的一段单调区间,那么复合函数 g ⋅ f ( x ) g\cdot f(x) g⋅f(x) 的单调性如下:
若
A
A
A 为
f
(
x
)
f(x)
f(x)的一段单升区间,
B
B
B 为
g
(
x
)
g(x)
g(x) 的一段单升区间,则
A
A
A 为
g
⋅
f
(
x
)
g\cdot f(x)
g⋅f(x) 的一段单升区间。
若
A
A
A 为
f
(
x
)
f(x)
f(x)的一段单降区间,
B
B
B 为
g
(
x
)
g(x)
g(x) 的一段单升区间,则
A
A
A 为
g
⋅
f
(
x
)
g\cdot f(x)
g⋅f(x) 的一段单降区间。
若
A
A
A 为
f
(
x
)
f(x)
f(x)的一段单升区间,
B
B
B 为
g
(
x
)
g(x)
g(x) 的一段单降区间,则
A
A
A 为
g
⋅
f
(
x
)
g\cdot f(x)
g⋅f(x) 的一段单降区间。
若
A
A
A 为
f
(
x
)
f(x)
f(x)的一段单降区间,
B
B
B 为
g
(
x
)
g(x)
g(x) 的一段单降区间,则
A
A
A 为
g
⋅
f
(
x
)
g\cdot f(x)
g⋅f(x) 的一段单升区间。
函数的奇偶性
如果一个函数图像关于 y y y 轴对称,那么这个函数就是偶函数。用数学方法表示为 f ( x ) = f ( − x ) f(x) = f(-x) f(x)=f(−x)
如果一个函数图像关于原点中心对称,那么这个函数就是奇函数。用数学方法表示为 f ( x ) = − f ( − x ) f(x) = -f(-x) f(x)=−f(−x)
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 为奇函数,则
f
(
x
)
+
g
(
x
)
f(x)+g(x)
f(x)+g(x) 为奇函数。
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 为偶函数,则
f
(
x
)
+
g
(
x
)
f(x)+g(x)
f(x)+g(x) 为偶函数。
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 一奇一偶,则
f
(
x
)
+
g
(
x
)
f(x)+g(x)
f(x)+g(x) 为奇偶性不明。
常见函数的奇偶性
函数
f
(
x
)
=
k
x
f(x)=kx
f(x)=kx 为奇函数。
当
a
a
a 为偶数时,函数
f
(
x
)
=
k
x
a
f(x)=kx^a
f(x)=kxa 为偶函数。
当
a
a
a 为奇数时,函数
f
(
x
)
=
k
x
a
f(x)=kx^a
f(x)=kxa 为奇函数。
函数
f
(
x
)
=
k
x
f(x)=\dfrac{k}{x}
f(x)=xk 为奇函数。
复合函数的奇偶性
两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 中,只要有一个是偶函数,则 g ⋅ f ( x ) g\cdot f(x) g⋅f(x) 为偶函数。
幂函数、指数函数、对数函数、对勾函数
幂函数
幂函数为 f ( x ) = x m f(x) = x^m f(x)=xm,其中 x x x 称为底数, m m m 称为指数,表示 m m m 个 x x x 相乘。
幂函数运算规则
a
1
m
=
a
m
(
0
≤
a
)
a^{\frac{1}{m}}=\sqrt[m]{a}~(0\leq a)
am1=ma (0≤a)
a
−
m
=
1
a
m
(
a
≠
0
)
a^{-m}=\frac{1}{a^m}~(a\not=0)
a−m=am1 (a=0)
a
m
+
n
=
a
m
×
a
n
a^{m+n}=a^m\times a^n
am+n=am×an
a
m
n
=
(
a
m
)
n
a^{mn}=(a^m)^n
amn=(am)n
a
0
=
1
(
a
≠
0
)
a^{0} = 1~(a \not= 0)
a0=1 (a=0)
0
a
=
0
(
a
≠
0
)
0^a = 0~(a\not=0)
0a=0 (a=0)
幂函数图像
0 ≤ x 0\leq x 0≤x 处图像
若
1
<
m
1 < m
1<m,则函数图像在
[
0
,
+
∞
)
[0, +\infty)
[0,+∞) 单调递增,速度随
x
x
x 增大而增快。
若
m
=
1
m = 1
m=1,则函数图像与
y
=
x
y=x
y=x 图像相同。
若
0
<
m
<
1
0 < m < 1
0<m<1,则函数图像在
[
0
,
+
∞
)
[0, +\infty)
[0,+∞) 单调递增,速度随
x
x
x 增大而减慢。
若
m
=
0
m = 0
m=0,则函数图像是两条射线,从
(
0
,
1
)
(0,1)
(0,1) 平行于
x
x
x 轴射向左右端(不包含原点)。
若
m
<
0
m < 0
m<0,则函数图像类似于反比例函数,在
[
0
,
+
∞
)
[0, +\infty)
[0,+∞) 处单调递减。
以下是幂函数的
5
5
5 种情况,分别为
f
(
x
)
=
x
2
,
f
(
x
)
=
x
1
,
f
(
x
)
=
x
1
2
,
f
(
x
)
=
x
0
,
f
(
x
)
=
x
−
1
f(x)=x^2,f(x)=x^1,f(x)=x^{\frac{1}{2}},f(x)=x^0,f(x)=x^{-1}
f(x)=x2,f(x)=x1,f(x)=x21,f(x)=x0,f(x)=x−1
x
<
0
x<0
x<0 处图像
函数的指数 m m m 一般可以表示成 − 1 a × p q ( 0 < p , q , gcd ( p , q ) = 1 ) -1^a\times \frac{p}{q} (0 < p,q, \gcd(p,q)=1) −1a×qp(0<p,q,gcd(p,q)=1),那么 f ( x ) = x p q ( − 1 a ) f(x) = \sqrt[q]{x^p}^{(-1^a)} f(x)=qxp(−1a)。
若
p
,
q
p,q
p,q 为奇数,则函数为一个奇函数,只需将
0
≤
x
0\leq x
0≤x 处图像关于原点对称即可。
若
p
p
p 为奇数,
q
q
q 为偶数,则该函数在
x
<
0
x<0
x<0 时无意义,只有
0
≤
x
0\leq x
0≤x 时图像。
若
p
p
p 为偶数,
q
q
q 为奇数,则函数为一个偶函数,只需将
0
≤
x
0\leq x
0≤x 处图像关于
x
=
0
x = 0
x=0 对称即可。
p , q p,q p,q 不可能同时为偶数。
指数函数
指数函数为 f ( x ) = a x f(x)=a^x f(x)=ax,一般要求 a > 0 , a ≠ 1 a>0, a\not=1 a>0,a=1
指数函数图像
指数函数图像恒大于 0 0 0。
当 1 < a 1< a 1<a 时,图像单调递增,速度随 x x x 增大而增快。
当 0 < a < 1 0<a<1 0<a<1 时,图像单调递减,速度随 x x x 减小而减小。
下图分别为
a
=
1
2
a=\frac{1}{2}
a=21 和
a
=
2
a=2
a=2 时图像。
对数函数
对数函数为
f
(
x
)
=
log
a
N
f(x)=\log_aN
f(x)=logaN,若
a
b
=
N
a^b=N
ab=N,则
log
a
N
=
b
\log_aN=b
logaN=b。
其中,
a
a
a 被称为底数,要求
a
>
0
,
a
≠
1
a>0, a\not=1
a>0,a=1,
b
b
b 被称为真数,要求
b
>
0
b>0
b>0
log
a
N
=
b
\log_aN=b
logaN=b 读作“以
a
a
a 为底,
N
N
N 的对数是
b
b
b”
log
10
N
\log_{10}N
log10N 被称为常用对数,简写为
lg
N
\lg N
lgN。
log
e
N
=
ln
N
\log_eN=\ln N
logeN=lnN 被称为自然对数
对数函数运算规则
log
a
b
+
log
a
c
=
log
a
b
c
\log_ab+\log_ac=\log_abc
logab+logac=logabc
log
a
b
−
log
a
c
=
log
a
b
c
\log_ab-\log_ac=\log_a\frac{b}{c}
logab−logac=logacb
log
a
b
=
log
c
b
log
c
a
\log_ab=\frac{\log_cb}{\log_ca}
logab=logcalogcb
log
a
b
c
=
c
log
a
b
\log_ab^c=c\log_ab
logabc=clogab
log
a
c
b
=
1
c
log
a
b
\log_{a^c}b=\frac{1}{c}\log_ab
logacb=c1logab
对数函数图像
因为 f ( x ) = l o g a x = y f(x) = log_ax = y f(x)=logax=y,所以 a y = x a^y = x ay=x,所以图像与指数函数图像关于直线 y = x y=x y=x 对称。
以下是
log
2
x
\log_{2}x
log2x 和
log
1
2
x
\log_{\frac{1}{2}}x
log21x 的图像
对勾函数
对勾函数指形如 f ( x ) = a x + b x f(x)=ax+\frac{b}{x} f(x)=ax+xb 的函数,满足 a b > 0 ab > 0 ab>0( a , b a, b a,b 同号)。
对勾函数图像
对勾函数因为由反比例函数和一次函数组成,所以图像为奇函数,以下是 y = x + 1 x y=x+\frac{1}{x} y=x+x1 的图像:
对勾函数在 ( 0 , + ∞ ) (0,+\infty) (0,+∞) 处的最小值点为 ( a b , 2 a b ) (\sqrt{\frac{a}{b}},2\sqrt{ab}) (ba,2ab)
在 ( − ∞ , 0 ) (-\infty,0) (−∞,0) 处最大值点为 ( − a b , − 2 a b ) (-\sqrt{\frac{a}{b}},-2\sqrt{ab}) (−ba,−2ab)
函数的对称性
函数
f
(
x
)
f(x)
f(x) 关于
x
=
m
x = m
x=m 对称,则
f
(
x
)
=
f
(
2
m
−
x
)
f(x) = f(2m - x)
f(x)=f(2m−x)。
函数
f
(
x
)
f(x)
f(x) 关于
(
m
,
n
)
(m, n)
(m,n) 对称,则
f
(
x
)
=
2
n
−
f
(
2
m
−
x
)
f(x) = 2n - f(2m - x)
f(x)=2n−f(2m−x)。
函数的周期性
定义
若函数 f ( x ) f(x) f(x) 定义域为 A A A,的最小正周期为 T T T,则对于所有 x ∈ A x \in A x∈A 且 x + T ∈ A x+T \in A x+T∈A,有 f ( x ) = f ( x + T ) f(x) = f(x + T) f(x)=f(x+T)。
常见函数周期性
f
(
x
)
=
f
(
x
+
a
)
f(x)=f(x+a)
f(x)=f(x+a):
f
(
x
)
f(x)
f(x) 以
a
a
a 为周期。
f
(
x
+
a
)
=
−
f
(
x
)
f(x+a)=-f(x)
f(x+a)=−f(x):
f
(
x
)
f(x)
f(x) 以
2
a
2a
2a 为周期。
f
(
x
+
a
)
=
±
1
f
(
x
)
f(x+a)=\pm \dfrac{1}{f(x)}
f(x+a)=±f(x)1:
f
(
x
)
f(x)
f(x) 以
2
a
2a
2a 为周期。
f
(
x
+
a
)
=
f
(
x
−
a
)
f(x+a)=f(x-a)
f(x+a)=f(x−a):
f
(
x
)
f(x)
f(x) 以
2
a
2a
2a 为周期。
f
(
x
+
a
)
=
1
−
f
(
x
)
1
+
f
(
x
)
f(x+a)=\dfrac{1-f(x)}{1+f(x)}
f(x+a)=1+f(x)1−f(x):
f
(
x
)
f(x)
f(x) 以
2
a
2a
2a 为周期。
f
(
x
+
a
)
=
−
1
−
f
(
x
)
1
+
f
(
x
)
f(x+a)=-\dfrac{1-f(x)}{1+f(x)}
f(x+a)=−1+f(x)1−f(x):
f
(
x
)
f(x)
f(x) 以
4
a
4a
4a 为周期。
f
(
x
+
a
)
=
1
+
f
(
x
)
1
−
f
(
x
)
f(x+a)=\dfrac{1+f(x)}{1-f(x)}
f(x+a)=1−f(x)1+f(x):
f
(
x
)
f(x)
f(x) 以
4
a
4a
4a 为周期。
求函数值域或最值
利用函数单调性
f ( x ) = g 1 ( x ) + g 2 ( x ) f(x)=g_1(x)+g_2(x) f(x)=g1(x)+g2(x),则可以计算 g 1 ( x ) , g 2 ( x ) g_1(x),g_2(x) g1(x),g2(x) 的单调区间,从而利用单调性计算 f ( x ) f(x) f(x) 最值。
整体换元法
若遇到一个分式分母或分子为一次式,则可以将一次式换元成 t t t,将二次式化成关于 t t t 的二次式,然后上下同除 t t t,可以得到一个对勾函数或者关于 1 t \frac{1}{t} t1 的二次式。
这时便可以通过对勾函数最小值或二次最值求出函数最值。
若遇到一个有根式的函数时,可以通过把根式换元成 t t t,然后用 t t t 表示 x x x,这样如果得到一个二次式,就可以求最值了。
利用判别式
我们可以将 f ( x ) f(x) f(x) 设成 y y y,这时,如果 y = f ( x ) y=f(x) y=f(x) 有解,则代表 f ( x ) f(x) f(x) 可以等于 y y y,这样我们只需求出 y y y 的范围,就可以得到 f ( x ) f(x) f(x) 的最值。
我们可以把函数通过左右平方等操作变成关于 x x x 的二次式,这个二次式的系数包含 y y y,因为要保证 y = f ( x ) y=f(x) y=f(x) 有解,则 Δ ≥ 0 \Delta \ge 0 Δ≥0
通过解 Δ ≥ 0 \Delta \ge 0 Δ≥0 则可以得到函数最值。
几何方法
可以把根式内的式转换成两个平方相加的形式,这样这个根式就可以表示平面内两个点的距离。
则可以把函数最值问题转换成几何内最值问题。
常用不等式
通过常用的不等式来求解最值( a b ≤ a + b 2 \sqrt{ab}\leq\frac{a+b}{2} ab≤2a+b 这种)
函数图像变换
平移与放缩
y
=
f
(
x
+
a
)
y=f(x+a)
y=f(x+a):
f
(
x
)
f(x)
f(x) 向左平移
a
a
a 个单位。
y
=
f
(
x
)
+
a
y=f(x)+a
y=f(x)+a:
f
(
x
)
f(x)
f(x) 向上平移
a
a
a 个单位。
y
=
f
(
a
x
)
y=f(ax)
y=f(ax):
f
(
x
)
f(x)
f(x) 横坐标变成原来的
1
a
\frac{1}{a}
a1 倍。
y
=
a
f
(
x
)
y=af(x)
y=af(x):
f
(
x
)
f(x)
f(x) 纵坐标变成原来的
a
a
a 倍。
更改横坐标则只更改
x
x
x,
f
(
2
x
)
⇒
f
(
2
(
x
+
1
)
)
f(2x)\Rarr f(2(x+1))
f(2x)⇒f(2(x+1))。
更改纵坐标则更改整个函数,
f
(
x
)
+
1
⇒
2
(
f
(
x
)
+
1
)
f(x)+1\Rarr 2(f(x)+1)
f(x)+1⇒2(f(x)+1)。
所以一般优先翻倍纵坐标,再平移纵坐标,优先平移横坐标,再翻倍横坐标。
对称
y
=
2
a
−
f
(
x
)
y=2a-f(x)
y=2a−f(x),
f
(
x
)
f(x)
f(x) 关于
y
=
a
y=a
y=a 轴对称。
y
=
f
(
2
a
−
x
)
y=f(2a-x)
y=f(2a−x),
f
(
x
)
f(x)
f(x) 关于
x
=
a
x=a
x=a 轴对称。
y
=
2
a
−
f
(
2
b
−
x
)
y=2a-f(2b-x)
y=2a−f(2b−x),
f
(
x
)
f(x)
f(x) 关于点
(
b
,
a
)
(b,a)
(b,a) 对称。
翻转
y
=
∣
f
(
x
)
∣
y=|f(x)|
y=∣f(x)∣,
f
(
x
)
f(x)
f(x) 的
x
x
x 轴上方不变,
x
x
x 轴下方翻转到
x
x
x 轴上方。
y
=
f
(
∣
x
∣
)
y=f(|x|)
y=f(∣x∣),
f
(
x
)
f(x)
f(x) 的
y
y
y 轴右方不变,
y
y
y 轴左方删除,将
y
y
y 轴右方对称到
y
y
y 轴左方。