【高中必修一】函数初步

嘿嘿,你有没有想过,初二就学高中内容是什么感受?

区间

闭区间: [ a , b ] [a,b] [a,b],表示 { x ∣ a ≤ x ≤ b } \{x|a\leq x\leq b\} {xaxb}
开区间: ( a , b ) (a,b) (a,b),表示 { x ∣ a < x < b } \{x|a<x<b\} {xa<x<b}
半开半闭区间: [ a , b ) [a,b) [a,b) { x ∣ a ≤ x < b } \{x|a \leq x < b\} {xax<b} ( a , b ] (a,b] (a,b] { x ∣ a < x ≤ b } \{x|a < x \leq b\} {xa<xb}
无限延申区间: ( − ∞ , b ) (-\infty,b) (,b) 表示 { x ∣ x < b } \{x|x < b\} {xx<b} ( − ∞ , b ] (-\infty,b] (,b] 表示 { x ∣ x ≤ b } \{x|x \leq b\} {xxb} ( a , − ∞ ) (a,-\infty) (a,) 表示 { x ∣ a < x } \{x|a<x\} {xa<x} [ a , + ∞ ) [a,+\infty) [a,+) 表示 { x ∣ a ≤ x } \{x|a\leq x\} {xax}

若用上述方法表示集合,则 a , b a,b a,b 称为对应区间的端点

区间并: ( a , b ) ∪ ( c , d ) (a,b) \cup (c,d) (a,b)(c,d)
区间交: ( a , b ) ∩ ( c , d ) (a,b) \cap (c,d) (a,b)(c,d)

映射

有两个集合 A , B A, B A,B,对于 A A A每一个元素,按照对应法则 f f f,都能从 B B B 中找到唯一的元素与之对应,则称 f f f A A A B B B 的一个映射。记为: f : A → B f:A\to B f:AB

单射:不存在 A A A 中不同元素对应到 B B B 中同一元素。

满射:不存在 B B B 中一个元素没有 A A A 中元素对应。

双射(一一映射):同时满足单射和双射。

复合映射 f : A → B ,   g : B → C ,   g ∘ f : A → C f: A\to B,~g:B\to C,~g \circ f: A\to C f:AB, g:BC, gf:AC

逆映射 f : A → B , f − 1 : B → A f: A\to B, f^{-1}:B\to A f:AB,f1:BA(需要满足双射)

函数定义

如果集合 A A A 中任意一个数 x x x,按对应法则 f f f,从 B B B 找到唯一元素 y y y 与之对应,且 B B B 中所有元素都存在 A A A 中元素与之对应,则把这个映射称为函数,记作: y = f ( x ) y = f(x) y=f(x)

其中, x x x自变量,取值范围称为函数的定义域 y y y因变量,取值范围称为函数的值域

函数三要素:对应法则,定义域,值域

定义域 + 值域 ⇏ \not\rArr 对应法则
对应法则 + 值域 ⇏ \not\rArr 定义域
对应法则 + 定义域 ⇒ \rArr 值域

函数表示

解析法 y = f ( x ) , x ∈ A y = f(x),x\in A y=f(x),xA

列表法:列出两个变量之间关系。

图像法:在图上标出所有 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 点。

复合函数

若存在两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),其中, f ( x ) f(x) f(x) 定义域为 A A A,值域为 B B B g ( x ) g(x) g(x) 定义域为 B B B,值域为 C C C
两个函数的复合函数为 y = g [ f ( x ) ] y=g[f(x)] y=g[f(x)],也写作 y = g ⋅ f ( x ) y=g\cdot f(x) y=gf(x)
复合函数的定义域为 A A A,值域为 C C C

复合函数 f ( x + 1 ) f(x+1) f(x+1) 的定义域是 x x x 的取值范围,而不是 x + 1 x+1 x+1 的。

函数的单调性

若函数 f ( x ) f(x) f(x) 定义域为 D D D

若存在集合 A ⊆ D A \sube D AD,使得对于所有 x 1 ∈ A , x 2 ∈ A x_1\in A,x_2 \in A x1A,x2A x 1 < x 2 x_1 < x_2 x1<x2,都有 f ( x 1 ) < f ( x 2 ) f(x_1) <f(x_2) f(x1)<f(x2),则 A A A 被称为一个 f ( x ) f(x) f(x)单调升区间,或称 f ( x ) f(x) f(x) 在区间 A A A 上是升函数

若存在集合 A ⊆ D A \sube D AD,使得对于所有 x 1 ∈ A , x 2 ∈ A x_1\in A,x_2 \in A x1A,x2A x 1 < x 2 x_1 < x_2 x1<x2,都有 f ( x 1 ) > f ( x 2 ) f(x_1) >f(x_2) f(x1)>f(x2),则 A A A 被称为一个 f ( x ) f(x) f(x)单调降区间,或称 f ( x ) f(x) f(x) 在区间 A A A 上是降函数

常见函数的单调性

一次函数: f ( x ) = k x + b f(x)=kx+b f(x)=kx+b

k > 0 k>0 k>0 时,函数单调增, k < 0 k<0 k<0 时,函数单调减。

二次函数: f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c

a > 0 a>0 a>0时, ( − ∞ , − b 2 a ) (-\infty,-\frac{b}{2a}) (,2ab) 单调减, ( − b 2 a , + ∞ ) (-\frac{b}{2a},+\infty) (2ab,+)单调增。
a < 0 a<0 a<0时, ( − ∞ , − b 2 a ) (-\infty,-\frac{b}{2a}) (,2ab) 单调增, ( − b 2 a , + ∞ ) (-\frac{b}{2a},+\infty) (2ab,+)单调减。

反比例函数: f ( x ) = k x f(x)=\dfrac{k}{x} f(x)=xk

k > 0 k>0 k>0时, ( − ∞ , 0 ) (-\infty,0) (,0) ( 0 , + ∞ ) (0,+\infty) (0,+) 分别单调减。
k < 0 k<0 k<0时, ( − ∞ , 0 ) (-\infty,0) (,0) ( 0 , + ∞ ) (0,+\infty) (0,+) 分别单调增。

复合函数的单调性

有函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) f ( x ) f(x) f(x) 中有一段区间 A A A f ( x ) f(x) f(x) A A A 中的值域为 B B B,若 A A A f ( x ) f(x) f(x)的一段单调区间, B B B g ( x ) g(x) g(x) 的一段单调区间,那么复合函数 g ⋅ f ( x ) g\cdot f(x) gf(x) 的单调性如下:

A A A f ( x ) f(x) f(x)的一段单升区间, B B B g ( x ) g(x) g(x) 的一段单升区间,则 A A A g ⋅ f ( x ) g\cdot f(x) gf(x) 的一段单升区间。
A A A f ( x ) f(x) f(x)的一段单降区间, B B B g ( x ) g(x) g(x) 的一段单升区间,则 A A A g ⋅ f ( x ) g\cdot f(x) gf(x) 的一段单降区间。
A A A f ( x ) f(x) f(x)的一段单升区间, B B B g ( x ) g(x) g(x) 的一段单降区间,则 A A A g ⋅ f ( x ) g\cdot f(x) gf(x) 的一段单降区间。
A A A f ( x ) f(x) f(x)的一段单降区间, B B B g ( x ) g(x) g(x) 的一段单降区间,则 A A A g ⋅ f ( x ) g\cdot f(x) gf(x) 的一段单升区间。

函数的奇偶性

如果一个函数图像关于 y y y 轴对称,那么这个函数就是偶函数。用数学方法表示为 f ( x ) = f ( − x ) f(x) = f(-x) f(x)=f(x)

如果一个函数图像关于原点中心对称,那么这个函数就是奇函数。用数学方法表示为 f ( x ) = − f ( − x ) f(x) = -f(-x) f(x)=f(x)

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 为奇函数,则 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x) 为奇函数。
f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 为偶函数,则 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x) 为偶函数。
f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 一奇一偶,则 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x) 为奇偶性不明。

常见函数的奇偶性

函数 f ( x ) = k x f(x)=kx f(x)=kx 为奇函数。
a a a 为偶数时,函数 f ( x ) = k x a f(x)=kx^a f(x)=kxa 为偶函数。
a a a 为奇数时,函数 f ( x ) = k x a f(x)=kx^a f(x)=kxa 为奇函数。
函数 f ( x ) = k x f(x)=\dfrac{k}{x} f(x)=xk 为奇函数。

复合函数的奇偶性

两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 中,只要有一个是偶函数,则 g ⋅ f ( x ) g\cdot f(x) gf(x) 为偶函数。

幂函数、指数函数、对数函数、对勾函数

幂函数

幂函数为 f ( x ) = x m f(x) = x^m f(x)=xm,其中 x x x 称为底数, m m m 称为指数,表示 m m m x x x 相乘。

幂函数运算规则

a 1 m = a m   ( 0 ≤ a ) a^{\frac{1}{m}}=\sqrt[m]{a}~(0\leq a) am1=ma  (0a)
a − m = 1 a m   ( a ≠ 0 ) a^{-m}=\frac{1}{a^m}~(a\not=0) am=am1 (a=0)
a m + n = a m × a n a^{m+n}=a^m\times a^n am+n=am×an
a m n = ( a m ) n a^{mn}=(a^m)^n amn=(am)n
a 0 = 1   ( a ≠ 0 ) a^{0} = 1~(a \not= 0) a0=1 (a=0)
0 a = 0   ( a ≠ 0 ) 0^a = 0~(a\not=0) 0a=0 (a=0)

幂函数图像

0 ≤ x 0\leq x 0x 处图像

1 < m 1 < m 1<m,则函数图像在 [ 0 , + ∞ ) [0, +\infty) [0,+) 单调递增,速度随 x x x 增大而增快。
m = 1 m = 1 m=1,则函数图像与 y = x y=x y=x 图像相同。
0 < m < 1 0 < m < 1 0<m<1,则函数图像在 [ 0 , + ∞ ) [0, +\infty) [0,+) 单调递增,速度随 x x x 增大而减慢。
m = 0 m = 0 m=0,则函数图像是两条射线,从 ( 0 , 1 ) (0,1) (0,1) 平行于 x x x 轴射向左右端(不包含原点)。
m < 0 m < 0 m<0,则函数图像类似于反比例函数,在 [ 0 , + ∞ ) [0, +\infty) [0,+) 处单调递减。

以下是幂函数的 5 5 5 种情况,分别为 f ( x ) = x 2 , f ( x ) = x 1 , f ( x ) = x 1 2 , f ( x ) = x 0 , f ( x ) = x − 1 f(x)=x^2,f(x)=x^1,f(x)=x^{\frac{1}{2}},f(x)=x^0,f(x)=x^{-1} f(x)=x2,f(x)=x1,f(x)=x21,f(x)=x0,f(x)=x1
在这里插入图片描述
x < 0 x<0 x<0 处图像

函数的指数 m m m 一般可以表示成 − 1 a × p q ( 0 < p , q , gcd ⁡ ( p , q ) = 1 ) -1^a\times \frac{p}{q} (0 < p,q, \gcd(p,q)=1) 1a×qp(0<p,q,gcd(p,q)=1),那么 f ( x ) = x p q ( − 1 a ) f(x) = \sqrt[q]{x^p}^{(-1^a)} f(x)=qxp (1a)

p , q p,q p,q 为奇数,则函数为一个奇函数,只需将 0 ≤ x 0\leq x 0x 处图像关于原点对称即可。
p p p 为奇数, q q q 为偶数,则该函数在 x < 0 x<0 x<0 时无意义,只有 0 ≤ x 0\leq x 0x 时图像。
p p p 为偶数, q q q 为奇数,则函数为一个偶函数,只需将 0 ≤ x 0\leq x 0x 处图像关于 x = 0 x = 0 x=0 对称即可。

p , q p,q p,q 不可能同时为偶数。

指数函数

指数函数为 f ( x ) = a x f(x)=a^x f(x)=ax,一般要求 a > 0 , a ≠ 1 a>0, a\not=1 a>0,a=1

指数函数图像

指数函数图像恒大于 0 0 0

1 < a 1< a 1<a 时,图像单调递增,速度随 x x x 增大而增快。

0 < a < 1 0<a<1 0<a<1 时,图像单调递减,速度随 x x x 减小而减小。

下图分别为 a = 1 2 a=\frac{1}{2} a=21 a = 2 a=2 a=2 时图像。
在这里插入图片描述

对数函数

对数函数为 f ( x ) = log ⁡ a N f(x)=\log_aN f(x)=logaN,若 a b = N a^b=N ab=N,则 log ⁡ a N = b \log_aN=b logaN=b
其中, a a a 被称为底数,要求 a > 0 , a ≠ 1 a>0, a\not=1 a>0,a=1 b b b 被称为真数,要求 b > 0 b>0 b>0
log ⁡ a N = b \log_aN=b logaN=b 读作“以 a a a 为底, N N N 的对数是 b b b

log ⁡ 10 N \log_{10}N log10N 被称为常用对数,简写为 lg ⁡ N \lg N lgN
log ⁡ e N = ln ⁡ N \log_eN=\ln N logeN=lnN 被称为自然对数

对数函数运算规则

log ⁡ a b + log ⁡ a c = log ⁡ a b c \log_ab+\log_ac=\log_abc logab+logac=logabc
log ⁡ a b − log ⁡ a c = log ⁡ a b c \log_ab-\log_ac=\log_a\frac{b}{c} logablogac=logacb
log ⁡ a b = log ⁡ c b log ⁡ c a \log_ab=\frac{\log_cb}{\log_ca} logab=logcalogcb
log ⁡ a b c = c log ⁡ a b \log_ab^c=c\log_ab logabc=clogab
log ⁡ a c b = 1 c log ⁡ a b \log_{a^c}b=\frac{1}{c}\log_ab logacb=c1logab

对数函数图像

因为 f ( x ) = l o g a x = y f(x) = log_ax = y f(x)=logax=y,所以 a y = x a^y = x ay=x,所以图像与指数函数图像关于直线 y = x y=x y=x 对称。

以下是 log ⁡ 2 x \log_{2}x log2x log ⁡ 1 2 x \log_{\frac{1}{2}}x log21x 的图像 在这里插入图片描述

对勾函数

对勾函数指形如 f ( x ) = a x + b x f(x)=ax+\frac{b}{x} f(x)=ax+xb 的函数,满足 a b > 0 ab > 0 ab>0 a , b a, b a,b 同号)。

对勾函数图像

对勾函数因为由反比例函数和一次函数组成,所以图像为奇函数,以下是 y = x + 1 x y=x+\frac{1}{x} y=x+x1 的图像:

的图像

对勾函数在 ( 0 , + ∞ ) (0,+\infty) (0,+) 处的最小值点为 ( a b , 2 a b ) (\sqrt{\frac{a}{b}},2\sqrt{ab}) (ba ,2ab )

( − ∞ , 0 ) (-\infty,0) (,0) 处最大值点为 ( − a b , − 2 a b ) (-\sqrt{\frac{a}{b}},-2\sqrt{ab}) (ba ,2ab )

函数的对称性

函数 f ( x ) f(x) f(x) 关于 x = m x = m x=m 对称,则 f ( x ) = f ( 2 m − x ) f(x) = f(2m - x) f(x)=f(2mx)
函数 f ( x ) f(x) f(x) 关于 ( m , n ) (m, n) (m,n) 对称,则 f ( x ) = 2 n − f ( 2 m − x ) f(x) = 2n - f(2m - x) f(x)=2nf(2mx)

函数的周期性

定义

若函数 f ( x ) f(x) f(x) 定义域为 A A A,的最小正周期 T T T,则对于所有 x ∈ A x \in A xA x + T ∈ A x+T \in A x+TA,有 f ( x ) = f ( x + T ) f(x) = f(x + T) f(x)=f(x+T)

常见函数周期性

f ( x ) = f ( x + a ) f(x)=f(x+a) f(x)=f(x+a) f ( x ) f(x) f(x) a a a 为周期。
f ( x + a ) = − f ( x ) f(x+a)=-f(x) f(x+a)=f(x) f ( x ) f(x) f(x) 2 a 2a 2a 为周期。
f ( x + a ) = ± 1 f ( x ) f(x+a)=\pm \dfrac{1}{f(x)} f(x+a)=±f(x)1 f ( x ) f(x) f(x) 2 a 2a 2a 为周期。
f ( x + a ) = f ( x − a ) f(x+a)=f(x-a) f(x+a)=f(xa) f ( x ) f(x) f(x) 2 a 2a 2a 为周期。
f ( x + a ) = 1 − f ( x ) 1 + f ( x ) f(x+a)=\dfrac{1-f(x)}{1+f(x)} f(x+a)=1+f(x)1f(x) f ( x ) f(x) f(x) 2 a 2a 2a 为周期。
f ( x + a ) = − 1 − f ( x ) 1 + f ( x ) f(x+a)=-\dfrac{1-f(x)}{1+f(x)} f(x+a)=1+f(x)1f(x) f ( x ) f(x) f(x) 4 a 4a 4a 为周期。
f ( x + a ) = 1 + f ( x ) 1 − f ( x ) f(x+a)=\dfrac{1+f(x)}{1-f(x)} f(x+a)=1f(x)1+f(x) f ( x ) f(x) f(x) 4 a 4a 4a 为周期。

求函数值域或最值

利用函数单调性

f ( x ) = g 1 ( x ) + g 2 ( x ) f(x)=g_1(x)+g_2(x) f(x)=g1(x)+g2(x),则可以计算 g 1 ( x ) , g 2 ( x ) g_1(x),g_2(x) g1(x),g2(x) 的单调区间,从而利用单调性计算 f ( x ) f(x) f(x) 最值。

整体换元法

若遇到一个分式分母或分子为一次式,则可以将一次式换元成 t t t,将二次式化成关于 t t t 的二次式,然后上下同除 t t t,可以得到一个对勾函数或者关于 1 t \frac{1}{t} t1 的二次式。

这时便可以通过对勾函数最小值或二次最值求出函数最值。

若遇到一个有根式的函数时,可以通过把根式换元成 t t t,然后用 t t t 表示 x x x,这样如果得到一个二次式,就可以求最值了。

利用判别式

我们可以将 f ( x ) f(x) f(x) 设成 y y y,这时,如果 y = f ( x ) y=f(x) y=f(x) 有解,则代表 f ( x ) f(x) f(x) 可以等于 y y y,这样我们只需求出 y y y 的范围,就可以得到 f ( x ) f(x) f(x) 的最值。

我们可以把函数通过左右平方等操作变成关于 x x x 的二次式,这个二次式的系数包含 y y y,因为要保证 y = f ( x ) y=f(x) y=f(x) 有解,则 Δ ≥ 0 \Delta \ge 0 Δ0

通过解 Δ ≥ 0 \Delta \ge 0 Δ0 则可以得到函数最值。

几何方法

可以把根式内的式转换成两个平方相加的形式,这样这个根式就可以表示平面内两个点的距离。

则可以把函数最值问题转换成几何内最值问题。

常用不等式

通过常用的不等式来求解最值( a b ≤ a + b 2 \sqrt{ab}\leq\frac{a+b}{2} ab 2a+b 这种)

函数图像变换

平移与放缩

y = f ( x + a ) y=f(x+a) y=f(x+a) f ( x ) f(x) f(x) 向左平移 a a a 个单位。
y = f ( x ) + a y=f(x)+a y=f(x)+a f ( x ) f(x) f(x) 向上平移 a a a 个单位。
y = f ( a x ) y=f(ax) y=f(ax) f ( x ) f(x) f(x) 横坐标变成原来的 1 a \frac{1}{a} a1 倍。
y = a f ( x ) y=af(x) y=af(x) f ( x ) f(x) f(x) 纵坐标变成原来的 a a a 倍。

更改横坐标则只更改 x x x f ( 2 x ) ⇒ f ( 2 ( x + 1 ) ) f(2x)\Rarr f(2(x+1)) f(2x)f(2(x+1))
更改纵坐标则更改整个函数, f ( x ) + 1 ⇒ 2 ( f ( x ) + 1 ) f(x)+1\Rarr 2(f(x)+1) f(x)+12(f(x)+1)

所以一般优先翻倍纵坐标,再平移纵坐标,优先平移横坐标,再翻倍横坐标。

对称

y = 2 a − f ( x ) y=2a-f(x) y=2af(x) f ( x ) f(x) f(x) 关于 y = a y=a y=a 轴对称。
y = f ( 2 a − x ) y=f(2a-x) y=f(2ax) f ( x ) f(x) f(x) 关于 x = a x=a x=a 轴对称。
y = 2 a − f ( 2 b − x ) y=2a-f(2b-x) y=2af(2bx) f ( x ) f(x) f(x) 关于点 ( b , a ) (b,a) (b,a) 对称。

翻转

y = ∣ f ( x ) ∣ y=|f(x)| y=f(x) f ( x ) f(x) f(x) x x x 轴上方不变, x x x 轴下方翻转到 x x x 轴上方。
y = f ( ∣ x ∣ ) y=f(|x|) y=f(x) f ( x ) f(x) f(x) y y y 轴右方不变, y y y 轴左方删除,将 y y y 轴右方对称到 y y y 轴左方。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值