三角函数是一类关于 角度的函数,它在研究三角形和圆等几何形状的性质时候有重要作用,也是研究波动、天体运动以及各种周期性现象的基础 数学工具。
一 三角函数定义
1.1 几何定义
1.1.1 三角定义
正—余 s—c
名称 | 式子 | 名称 | 式子 |
---|---|---|---|
正弦 | sin θ = a\h | 余割 | csc θ = h\a = 1\sin θ |
余弦 | cos θ = b\h | 正割 | sec θ = h\b = 1\cos θ |
正切 | tan θ = a\b | 余切 | cot θ = b\a = 1\tan θ |
1.1.2 圆定义
给定一个角度θ,设A(1,0)为起点,若θ>0则将OA逆时针转动,设最终点A转到的位置为P(x,y),那么:
名称 | 式子 | 名称 | 式子 |
---|---|---|---|
正弦 | sin θ = y | 余割 | csc θ = 1\y |
余弦 | cos θ = x | 正割 | sec θ = 1\x = 1\cos θ |
正切 | tan θ = y\x | 余切 | cot θ = x\y = 1\tan θ |
于是有
s i n 2 θ + c o s 2 θ = y 2 + x 2 = r 2 = 1 sin^2θ+cos^2θ=y^2+x^2=r^2=1 sin2θ+cos2θ=y2+x2=r2=1
角度θ可以是任意值可以将弧长作为三角函数的输入值。那么有
s i n θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z c o s θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z sin θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z \\ cos θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z sinθ=sin(θ+2Πk)∀θ∈R,k∈Zcosθ=sin(θ+2Πk)∀θ∈R,k∈Z
正切或余切的周期是Π,其余的为2Π
长度等于半径长的圆弧 所对的圆心角为 1弧度的角。
π与180°有什么关系如下:

1.2 特殊角的三角函数值
1.3 级数定义
可以证明以上的无穷级数对任意实数x都是收敛的,所以很好地定义了正弦和余弦函数。
另外我们也很容易得到上面两个定义后的函数的奇偶性,即可得:
两个级数都是连续,可微,且求导导数的时候还可以使用逐项求导的方法,即可得:
二 反三角函数定义
首先我们先了解一下反函数的定义
y=f(x)有反函数 则必须严格单调 【保证了反函数不会出现 一对多 的情况】
但是由于三角函数属于周期函数,不是单射函数,所以严格来说并没有反函数。因此我们要限制三角函数定义域,使三角函数变成双射函数。基本的反三角函数定义为:
三 函数图像
3.1 三角函数图像
正弦余弦正切
余割函数csc x = 1\sin x
正割函数sec x = 1\cos x
余切函数 cot x = 1\tan x
3.2 反角函数图像
arcsin x arccos x
arccotx arctan x
arccsc x arcsec x
三 公式
https://zhuanlan.zhihu.com/p/20102140
3.1 诱导公式
目的:kΠ\2 的整数倍去掉,只保留α
对应函数的性质相同:正弦—余割 余弦—正割 正切—余切
3.1.1 关于Π的周期性
3.1.2 奇偶性
3.1.3 关于y的对称性
3.1.4 直接三角形转换
- 这些公式都是存在内在联系的
口诀:奇变偶不变,符号看象限。k为奇数时候,sin变cos,对于正负号,则要看最后角所在的象限进行判断。
ASTC记忆法
第一象限的 A 即是 All(全部皆正)。
第二象限的 S 即是 Sine & CoSecant(正弦以及余割为正)。
第三象限的 T 即是 Tangent & Cotangent(正切以及余切为正)。
第四象限的 C 即是 Cosine & SeCant(余弦以及正割为正)。
3.2 和差角公式
相加 相减公式
首先引入一个最基本的公式
平面上两个单位向量,与x轴正向夹角分别为x和y,则这两个向量分别为(cos x, sin x), (cos y, sin y)。则两个向量的点积为cos x cos y + sin x sin y = 1*1*cos(x-y) = cos(x-y)
c c + s s c o s ( x − y ) = c o s x cos y + s i n x sin y 引 入 此 基 础 公 式 cc+ss \quad cos(x-y) = cosx \cos y + sinx \sin y \quad 引入此基础公式 cc+sscos(x−y)=cosxcosy+sinxsiny引入此基础公式
c c − s s c o s ( x + y ) = c o s x c o s y − s i n x s i n y ( y 用 − y 代 入 ) cc-ss \quad cos(x+y) = cosx \ cosy - sinx \ siny \quad (y用-y代入) cc−sscos(x+y)=cosx cosy−sinx siny(y用−y代入)
s c + c s s i n ( x + y ) = s i n x c o s y + c o s x s i n y x 用 Π / 2 − x 代 入 sc+cs \quad sin(x+y) = sinx \ cosy + cosx \ siny \quad x用Π/2-x代入 sc+cssin(x+y)=sinx cosy+cosx sinyx用Π/2−x代入
s c − c s s i n ( x − y ) = s i n x c o s y − c o s x s i n y y 用 − y 代 入 ( 5 ) sc-cs \quad sin(x-y) = sinx \ cosy -cosx\ siny \quad y用-y代入(5) sc−cssin(x−y)=sinx cosy−cosx sinyy用−y代入(5)
t a n ( x + y ) = t a n x + t a n y 1 − t a n x t a n y 代 入 ( 5 ) / ( 4 ) 再 上 下 除 以 c c tan(x+y) = \frac{tanx + tany}{1- tanx \ tany} \quad 代入(5)/(4)再上下除以cc tan(x+y)=1−tanx tanytanx+tany代入(5)/(4)再上下除以cc
t a n ( x − y ) = t a n x − t a n y 1 + t a n x t a n y − y 代 入 ( 6 ) 再 对 t a n 变 号 tan(x-y) = \frac{tanx - tany}{1 + tanx \ tany} \quad \quad -y代入(6)再对tan变号 tan(x−y)=1+tanx tanytanx−tany−y代入(6)再对tan变号
总结
3.3 倍角公式
s i n 2 x = s i n ( x + x ) = 2 s i n x ∗