三角函数


三角函数是一类关于 角度的函数,它在研究三角形和圆等几何形状的性质时候有重要作用,也是研究波动、天体运动以及各种周期性现象的基础 数学工具

一 三角函数定义

1.1 几何定义

1.1.1 三角定义

在这里插入图片描述

正—余 s—c

名称 式子 名称 式子
正弦 sin θ = a\h 余割 csc θ = h\a = 1\sin θ
余弦 cos θ = b\h 正割 sec θ = h\b = 1\cos θ
正切 tan θ = a\b 余切 cot θ = b\a = 1\tan θ

1.1.2 圆定义

给定一个角度θ,设A(1,0)为起点,若θ>0则将OA逆时针转动,设最终点A转到的位置为P(x,y),那么:

在这里插入图片描述

名称 式子 名称 式子
正弦 sin θ = y 余割 csc θ = 1\y
余弦 cos θ = x 正割 sec θ = 1\x = 1\cos θ
正切 tan θ = y\x 余切 cot θ = x\y = 1\tan θ

于是有
s i n 2 θ + c o s 2 θ = y 2 + x 2 = r 2 = 1 sin^2θ+cos^2θ=y^2+x^2=r^2=1 sin2θ+cos2θ=y2+x2=r2=1
角度θ可以是任意值可以将弧长作为三角函数的输入值。那么有
s i n θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z c o s θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z sin θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z \\ cos θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z sinθ=sin(θ+2Πk)θR,kZcosθ=sin(θ+2Πk)θR,kZ
正切或余切的周期是Π,其余的为2Π

长度等于半径长的圆弧 所对的圆心角为 1弧度的角。

π与180°有什么关系如下:

v2-271364b2a0b90b86882ee35ffe1bd0d3_b

1.2 特殊角的三角函数值

在这里插入图片描述

1.3 级数定义

在这里插入图片描述

可以证明以上的无穷级数对任意实数x都是收敛的,所以很好地定义了正弦和余弦函数。

另外我们也很容易得到上面两个定义后的函数的奇偶性,即可得:

image-20210411192442933

两个级数都是连续,可微,且求导导数的时候还可以使用逐项求导的方法,即可得:

image-20210411192555340

二 反三角函数定义

首先我们先了解一下反函数的定义

image-20210411195249040

y=f(x)有反函数 则必须严格单调 【保证了反函数不会出现 一对多 的情况】

image-20210411195511687

但是由于三角函数属于周期函数,不是单射函数,所以严格来说并没有反函数。因此我们要限制三角函数定义域,使三角函数变成双射函数。基本的反三角函数定义为:

在这里插入图片描述

三 函数图像

3.1 三角函数图像

正弦余弦正切

在这里插入图片描述

余割函数csc x = 1\sin x

在这里插入图片描述

正割函数sec x = 1\cos x

在这里插入图片描述

余切函数 cot x = 1\tan x

在这里插入图片描述

3.2 反角函数图像

arcsin x arccos x

image-20210411201048133

arccotx arctan x

image-20210411201553410

arccsc x arcsec x

三 公式

https://zhuanlan.zhihu.com/p/20102140

3.1 诱导公式

目的:kΠ\2 的整数倍去掉,只保留α

对应函数的性质相同:正弦—余割 余弦—正割 正切—余切

3.1.1 关于Π的周期性

在这里插入图片描述

3.1.2 奇偶性

在这里插入图片描述

3.1.3 关于y的对称性

在这里插入图片描述

3.1.4 直接三角形转换

在这里插入图片描述

在这里插入图片描述

  1. 这些公式都是存在内在联系的

在这里插入图片描述

口诀:奇变偶不变,符号看象限。k为奇数时候,sin变cos,对于正负号,则要看最后角所在的象限进行判断。

ASTC记忆法

第一象限的 A 即是 All(全部皆正)。
第二象限的 S 即是 Sine & CoSecant(正弦以及余割为正)。
第三象限的 T 即是 Tangent & Cotangent(正切以及余切为正)。
第四象限的 C 即是 Cosine & SeCant(余弦以及正割为正)。

3.2 和差角公式

相加 相减公式

首先引入一个最基本的公式

平面上两个单位向量,与x轴正向夹角分别为x和y,则这两个向量分别为(cos x, sin x), (cos y, sin y)。则两个向量的点积为cos x cos y + sin x sin y = 1*1*cos(x-y) = cos(x-y)
c c + s s c o s ( x − y ) = c o s x cos ⁡ y + s i n x sin ⁡ y 引 入 此 基 础 公 式 cc+ss \quad cos(x-y) = cosx \cos y + sinx \sin y \quad 引入此基础公式 cc+sscos(xy)=cosxcosy+sinxsiny

c c − s s c o s ( x + y ) = c o s x   c o s y − s i n x   s i n y ( y 用 − y 代 入 ) cc-ss \quad cos(x+y) = cosx \ cosy - sinx \ siny \quad (y用-y代入) ccsscos(x+y)=cosx cosysinx siny(yy)

s c + c s s i n ( x + y ) = s i n x   c o s y + c o s x   s i n y x 用 Π / 2 − x 代 入 sc+cs \quad sin(x+y) = sinx \ cosy + cosx \ siny \quad x用Π/2-x代入 sc+cssin(x+y)=sinx cosy+cosx sinyxΠ/2x

s c − c s s i n ( x − y ) = s i n x   c o s y − c o s x   s i n y y 用 − y 代 入 ( 5 ) sc-cs \quad sin(x-y) = sinx \ cosy -cosx\ siny \quad y用-y代入(5) sccssin(xy)=sinx cosycosx sinyyy(5)

t a n ( x + y ) = t a n x + t a n y 1 − t a n x   t a n y 代 入 ( 5 ) / ( 4 ) 再 上 下 除 以 c c tan(x+y) = \frac{tanx + tany}{1- tanx \ tany} \quad 代入(5)/(4)再上下除以cc tan(x+y)=1tanx tanytanx+tany(5)/(4)cc

t a n ( x − y ) = t a n x − t a n y 1 + t a n x   t a n y − y 代 入 ( 6 ) 再 对 t a n 变 号 tan(x-y) = \frac{tanx - tany}{1 + tanx \ tany} \quad \quad -y代入(6)再对tan变号 tan(xy)=1+tanx tanytanxtanyy(6)tan

总结

在这里插入图片描述

3.3 倍角公式

s i n   2 x = s i n ( x + x ) = 2 s i n x ∗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值