三角函数


三角函数是一类关于 角度的函数,它在研究三角形和圆等几何形状的性质时候有重要作用,也是研究波动、天体运动以及各种周期性现象的基础 数学工具

一 三角函数定义

1.1 几何定义

1.1.1 三角定义

在这里插入图片描述

正—余 s—c

名称式子名称式子
正弦sin θ = a\h余割csc θ = h\a = 1\sin θ
余弦cos θ = b\h正割sec θ = h\b = 1\cos θ
正切tan θ = a\b余切cot θ = b\a = 1\tan θ

1.1.2 圆定义

给定一个角度θ,设A(1,0)为起点,若θ>0则将OA逆时针转动,设最终点A转到的位置为P(x,y),那么:

在这里插入图片描述

名称式子名称式子
正弦sin θ = y余割csc θ = 1\y
余弦cos θ = x正割sec θ = 1\x = 1\cos θ
正切tan θ = y\x余切cot θ = x\y = 1\tan θ

于是有
s i n 2 θ + c o s 2 θ = y 2 + x 2 = r 2 = 1 sin^2θ+cos^2θ=y^2+x^2=r^2=1 sin2θ+cos2θ=y2+x2=r2=1
角度θ可以是任意值可以将弧长作为三角函数的输入值。那么有
s i n θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z c o s θ = s i n ( θ + 2 Π k ) ∀ θ ∈ R , k ∈ Z sin θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z \\ cos θ = sin(θ+2Πk) \quad {\forall}θ∈R,k∈Z sinθ=sin(θ+2Πk)θR,kZcosθ=sin(θ+2Πk)θR,kZ
正切或余切的周期是Π,其余的为2Π

长度等于半径长的圆弧 所对的圆心角为 1弧度的角。

π与180°有什么关系如下:

v2-271364b2a0b90b86882ee35ffe1bd0d3_b

1.2 特殊角的三角函数值

在这里插入图片描述

1.3 级数定义

在这里插入图片描述

可以证明以上的无穷级数对任意实数x都是收敛的,所以很好地定义了正弦和余弦函数。

另外我们也很容易得到上面两个定义后的函数的奇偶性,即可得:

image-20210411192442933

两个级数都是连续,可微,且求导导数的时候还可以使用逐项求导的方法,即可得:

image-20210411192555340

二 反三角函数定义

首先我们先了解一下反函数的定义

image-20210411195249040

y=f(x)有反函数 则必须严格单调 【保证了反函数不会出现 一对多 的情况】

image-20210411195511687

但是由于三角函数属于周期函数,不是单射函数,所以严格来说并没有反函数。因此我们要限制三角函数定义域,使三角函数变成双射函数。基本的反三角函数定义为:

在这里插入图片描述

三 函数图像

3.1 三角函数图像

正弦余弦正切

在这里插入图片描述

余割函数csc x = 1\sin x

在这里插入图片描述

正割函数sec x = 1\cos x

在这里插入图片描述

余切函数 cot x = 1\tan x

在这里插入图片描述

3.2 反角函数图像

arcsin x arccos x

image-20210411201048133

arccotx arctan x

image-20210411201553410

arccsc x arcsec x

三 公式

https://zhuanlan.zhihu.com/p/20102140

3.1 诱导公式

目的:kΠ\2 的整数倍去掉,只保留α

对应函数的性质相同:正弦—余割 余弦—正割 正切—余切

3.1.1 关于Π的周期性

在这里插入图片描述

3.1.2 奇偶性

在这里插入图片描述

3.1.3 关于y的对称性

在这里插入图片描述

3.1.4 直接三角形转换

在这里插入图片描述

在这里插入图片描述

  1. 这些公式都是存在内在联系的

在这里插入图片描述

口诀:奇变偶不变,符号看象限。k为奇数时候,sin变cos,对于正负号,则要看最后角所在的象限进行判断。

ASTC记忆法

第一象限的 A 即是 All(全部皆正)。
第二象限的 S 即是 Sine & CoSecant(正弦以及余割为正)。
第三象限的 T 即是 Tangent & Cotangent(正切以及余切为正)。
第四象限的 C 即是 Cosine & SeCant(余弦以及正割为正)。

3.2 和差角公式

相加 相减公式

首先引入一个最基本的公式

平面上两个单位向量,与x轴正向夹角分别为x和y,则这两个向量分别为(cos x, sin x), (cos y, sin y)。则两个向量的点积为cos x cos y + sin x sin y = 1*1*cos(x-y) = cos(x-y)
c c + s s c o s ( x − y ) = c o s x cos ⁡ y + s i n x sin ⁡ y 引 入 此 基 础 公 式 cc+ss \quad cos(x-y) = cosx \cos y + sinx \sin y \quad 引入此基础公式 cc+sscos(xy)=cosxcosy+sinxsiny

c c − s s c o s ( x + y ) = c o s x   c o s y − s i n x   s i n y ( y 用 − y 代 入 ) cc-ss \quad cos(x+y) = cosx \ cosy - sinx \ siny \quad (y用-y代入) ccsscos(x+y)=cosx cosysinx siny(yy)

s c + c s s i n ( x + y ) = s i n x   c o s y + c o s x   s i n y x 用 Π / 2 − x 代 入 sc+cs \quad sin(x+y) = sinx \ cosy + cosx \ siny \quad x用Π/2-x代入 sc+cssin(x+y)=sinx cosy+cosx sinyxΠ/2x

s c − c s s i n ( x − y ) = s i n x   c o s y − c o s x   s i n y y 用 − y 代 入 ( 5 ) sc-cs \quad sin(x-y) = sinx \ cosy -cosx\ siny \quad y用-y代入(5) sccssin(xy)=sinx cosycosx sinyyy(5)

t a n ( x + y ) = t a n x + t a n y 1 − t a n x   t a n y 代 入 ( 5 ) / ( 4 ) 再 上 下 除 以 c c tan(x+y) = \frac{tanx + tany}{1- tanx \ tany} \quad 代入(5)/(4)再上下除以cc tan(x+y)=1tanx tanytanx+tany(5)/(4)cc

t a n ( x − y ) = t a n x − t a n y 1 + t a n x   t a n y − y 代 入 ( 6 ) 再 对 t a n 变 号 tan(x-y) = \frac{tanx - tany}{1 + tanx \ tany} \quad \quad -y代入(6)再对tan变号 tan(xy)=1+tanx tanytanxtanyy(6)tan

总结

在这里插入图片描述

3.3 倍角公式

s i n   2 x = s i n ( x + x ) = 2 s i n x ∗ c o s x 把 x = y 代 入 ( 5 ) sin\ 2x = sin(x+x) = 2sinx * cosx \quad 把x=y代入(5) sin 2x=sin(x+x)=2sinxcosxx=y(5)

c o s   2 x = c o s ( x + x ) = c o s 2 x − s i n 2 x 把 x = y 代 入 ( 4 ) cos\ 2x = cos(x+x) = cos^2x-sin^2x \quad 把x=y代入(4) cos 2x=cos(x+x)=cos2xsin2xx=y(4)

t a n   2 x = t a n ( x + x ) = 2 t a n x 1 − t a n 2 x 把 x = y 代 入 ( 6 ) tan\ 2x = tan(x+x) = \frac{2tanx}{1-tan^2x} \quad 把x=y代入(6) tan 2x=tan(x+x)=1tan2x2tanxx=y(6)

3.4 半角/降幂公式

注 意 到 ( 9 ) 式 c o s   2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x 注意到(9)式 \quad cos\ 2x = cos^2x-sin^2x = 2cos^2x-1=1-2sin^2x (9)cos 2x=cos2xsin2x=2cos2x1=12sin2x

c o s 2 x 2 = 1 + c o s   x 2 cos^2\frac{x}{2} = \frac{1+cos\ x}{2} cos22x=21+cos x

s i n 2 x 2 = 1 − c o s   x 2 sin^2\frac{x}{2} = \frac{1-cos\ x}{2} sin22x=21cos x

t a n 2 x 2 = 1 − c o s   x 1 + c o s   x 式 ( 14 ) / ( 13 ) tan^2\frac{x}{2} = \frac{1-cos\ x}{1+cos\ x} \quad 式(14)/(13) tan22x=1+cos x1cos x(14)/(13)

总结

在这里插入图片描述

3.5 积与和差

乘积化为和或差
s i n   x   c o s   y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] 式 ( 5 ) + ( 6 ) sin\ x\ cos\ y = \frac{1}{2}[sin(x+y)+sin(x-y)] \quad 式(5)+(6) sin x cos y=21[sin(x+y)+sin(xy)](5)+(6)

c o s   x   s i n   y = 1 2 [ s i n ( x + y ) − s i n ( x − y ) ] cos\ x \ sin\ y = \frac{1}{2}[sin(x+y)-sin(x-y)] cos x sin y=21[sin(x+y)sin(xy)]

c o s   x   c o s   y = 1 2 [ c o s ( x − y ) + c o s ( x + y ) ] cos\ x \ cos \ y = \frac{1}{2}[cos(x-y) + cos(x+y)] \quad cos x cos y=21[cos(xy)+cos(x+y)]

s i n   x   s i n   y = 1 2 [ c o s ( x − y ) − c o s ( x + y ) ] sin\ x\ sin\ y = \frac{1}{2}[cos(x-y)-cos(x+y)] sin x sin y=21[cos(xy)cos(x+y)]

和差化积

令u = x + y, v = x - y,则x = (u+v)/2, y = (u-v)/2。代入上式(16)-(19)即可得
s i n   u + s i n   v = 2   s i n u + v 2 c o s u − v 2 sin\ u +sin\ v = 2\ sin\frac{u+v}{2}cos\frac{u-v}{2} sin u+sin v=2 sin2u+vcos2uv

s i n   u − s i n   v = 2   c o s u + v 2 s i n u − v 2 sin\ u - sin\ v = 2\ cos\frac{u+v}{2}sin\frac{u-v}{2} sin usin v=2 cos2u+vsin2uv

c o s   u + c o s   v = 2   c o s u + v 2 c o s u − v 2 cos\ u + cos\ v = 2\ cos\frac{u+v}{2}cos\frac{u-v}{2} cos u+cos v=2 cos2u+vcos2uv

c o s   u − c o s   v = − 2   s i n u + v 2 s i n u − v 2 cos\ u - cos\ v = -2\ sin\frac{u+v}{2}sin\frac{u-v}{2} cos ucos v=2 sin2u+vsin2uv

总结

在这里插入图片描述

3.6 万能公式

把sin,cos,tan均用tan x/2 表示。后者值域为整个实数区间,便于考察许多性质。首先我们推导一下cos的万能公式
c o s   α = c o s 2 α 2 − s i n 2 α 2 c o s 2 α 2 + s i n 2 α 2 = 1 − t a n 2 α 2 1 + t a n 2 α 2 = 1 − t 2 1 + t 2 cos\ α = \frac{cos^2\frac{α}{2}-sin^2\frac{α}{2}}{cos^2\frac{α}{2}+sin^2\frac{α}{2}} = \frac{1-tan^2\frac{α}{2}}{1+tan^2\frac{α}{2}} = \frac{1-t^2}{1+t^2} cos α=cos22α+sin22αcos22αsin22α=1+tan22α1tan22α=1+t21t2

s i n   α = c o s   α   t a n   α = 1 − t a n 2 α 2 1 + t a n 2 α 2 ∗ 2 t a n   α 1 − t a n 2 α = 2   t a n α 1 + t a n 2 α = 2 t 1 + t 2 sin\ α = cos\ α\ tan\ α = \frac{1-tan^2\frac{α}{2}}{1+tan^2\frac{α}{2}} * \frac{2tan\ α}{1-tan^2α} = \frac{2\ tanα}{1+tan^2α} = \frac{2t}{1+t^2} sin α=cos α tan α=1+tan22α1tan22α1tan2α2tan α=1+tan2α2 tanα=1+t22t

t a n α = s i n x c o s x = 2 t 1 − t 2 二 倍 角 公 式 tan α =\frac{sinx}{cosx} = \frac{2t}{1-t^2} \quad 二倍角公式 tanα=cosxsinx=1t22t

3.7 辅助角公式

a s i n x + b c o s x = a 2 + b 2 ( a s i n x a 2 + b 2 + b c o s x a 2 + b 2 ) = a 2 + b 2 ( s i n x c o s β + c o s x s i n β ) = a 2 + b 2 s i n ( x + β ) \begin{aligned} asinx+bcosx &= \sqrt{a^2+b^2}(\frac{asinx}{\sqrt{a^2+b^2}}+\frac{bcosx}{\sqrt{a^2+b^2}}) \\ &= \sqrt{a^2+b^2}(sinxcosβ+cosxsinβ) \\ &= \sqrt{a^2+b^2}sin(x+β) \end{aligned} asinx+bcosx=a2+b2 (a2+b2 asinx+a2+b2 bcosx)=a2+b2 (sinxcosβ+cosxsinβ)=a2+b2 sin(x+β)
其中
注 意 到   a a 2 + b 2 + b a 2 + b 2 = 1 令 t a n β = b a 通 常 a , b 属 于 R + , β 属 于 ( 0 , Π 2 ) , β = a r c t a n ( b a ) 注意到 \ \frac{a}{a^2+b^2}+\frac{b}{a^2+b^2}=1 \\ 令\quad tanβ = \frac{b}{a} \quad 通常a,b属于R^+,β属于(0,\frac{Π}{2}) ,β = arctan(\frac{b}{a})  a2+b2a+a2+b2b=1tanβ=aba,bR+,β(0,2Π),β=arctan(ab)
由此可推出常用结论

image-20210412162412775

更一般的
a s i n x + b s i n ( x + α ) = c s i n ( x + β ) c = a 2 + b 2 + 2 a b c o s α β = a r c t a n 2 ( b s i n α , a + b c o s α ) 4 象 限 反 正 切 , 它 的 取 值 不 仅 取 决 于 正 切 值 a / b , 还 取 决 于 点 ( b , a ) 落 入 哪 个 象 限 asinx+bsin(x+α) = csin(x+β) \\ c = \sqrt{a^2+b^2+2abcosα} \\ β = arctan2(bsinα,a+bcosα) \quad 4象限反正切,它的取值不仅取决于正切值a/b,还取决于点 (b, a) 落入哪个象限 asinx+bsin(x+α)=csin(x+β)c=a2+b2+2abcosα β=arctan2(bsinα,a+bcosα)4a/b(b,a)

3.8 平移和缩放

一句话:左加右减,整体变换

四 三角函数的导数

回顾积与和差公式

在这里插入图片描述

导数的定义

image-20210412164516442

证明 (sinx)’=cosx
( s i n   x ) ′ = lim ⁡ Δ x → 0 s i n ( x + Δ x ) − s i n ( x ) Δ x = lim ⁡ Δ x → 0 2 c o s 2 x + Δ x 2 s i n ( Δ x ) Δ x = lim ⁡ Δ x → 0 c o s ( 2 x + Δ x 2 ) = c o s   x (sin\ x)' = \lim_{Δx \rightarrow0}\frac{sin(x+Δx)-sin(x)}{Δx} = \lim_{Δx \rightarrow0}\frac{2cos\frac{2x+Δx}{2}sin(Δx)}{Δx}=\lim_{Δx \rightarrow0}cos(\frac{2x+Δx}{2}) = cos\ x sin x)=Δx0limΔxsin(x+Δx)sin(x)=Δx0limΔx2cos22x+Δxsin(Δx)=Δx0limcos(22x+Δx)=cos x
其他类似

在这里插入图片描述

证明(arctanx)’,令y=tanx,x=arctany,回顾反函数求导法则
x ′ = 1 y ′ = 1 t a n ( x ) ′ = c o s 2 x = c o s 2 x s i n 2 y + c o s 2 y = 1 t a n 2 y + 1 = 1 1 + x 2 s x' = \frac{1}{y'} = \frac{1}{tan(x)'} = cos^2x = \frac{cos^2x}{sin^2y+cos^2y} = \frac{1}{tan^2y+1} = \frac{1}{1+x^2}s x=y1=tan(x)1=cos2x=sin2y+cos2ycos2x=tan2y+11=1+x21s
其他类似

在这里插入图片描述

五 相关定理

在这里插入图片描述

5.1 正弦定理

在这里插入图片描述

5.2 余弦定理

在这里插入图片描述

5.3 其他

正切定理

在这里插入图片描述

余切定理

在这里插入图片描述

六 应用

以下仅给出简单例子

6.1 解三角

在这里插入图片描述

6.2 积分

求不定积分

image-20210412210738432

七 补充

其他三角函数的级数定义

在这里插入图片描述

基本关系

在这里插入图片描述

名称式子名称式子
正弦sin θ = y余割csc θ = 1/y
余弦cos θ = x正割sec θ = 1/x = 1/cos θ
正切tan θ = y\x余切cot θ = x/y = 1/tan θ

写在最后

​ 重点掌握:

  • 2倍角公式
  • 求导

image-20210412204716443

  • 和差角公式(掌握前三条)

在这里插入图片描述

  • 积化和差

在这里插入图片描述

  • 正弦余弦定理

参考文章

  • http://www.duodaa.com/blog/index.php/archives/802/
  • https://zh.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0#%E5%8F%8D%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0
  • https://zhuanlan.zhihu.com/p/20102140
  • https://www.zhihu.com/search?type=content&q=%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0%E6%B1%82%E5%AF%BC
  • https://www.jianshu.com/p/d3b665025775
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值