DP优化 - 四边形不等式优化

若对于 i ≤ i ′ ≤ j ≤ j ′ i\leq i'\leq j \leq j' iijj,二维数组 a a a 满足如下性质:

a i , j + a i ′ , j ′ ≤ a i , j ′ + a i ′ , j a_{i,j} + a_{i',j'} \leq a_{i,j'} + a_{i', j} ai,j+ai,jai,j+ai,j

则称数组 a a a 满足四边形不等式。

若对于 i ≤ i ′ ≤ j ≤ j ′ i\leq i'\leq j \leq j' iijj,二维数组 a a a 满足如下性质:

a i ′ , j ≤ a i , j ′ a_{i',j} \leq a_{i,j'} ai,jai,j

则称数组 a a a 满足关于区间包含的单调性。

动态规划中有一种常见的转移方程(一般见于区间 DP):

f i , j = { min ⁡ i ≤ k < j { x ∣ x = w i , j + f i , k + f k + 1 , j } i < j 0 i = j ∞ i > j f_{i,j}=\begin{cases} \min\limits_{i\leq k< j}\{x|x=w_{i,j}+f_{i,k}+f_{k+1,j}\}&i<j\\ 0&i=j\\ \infty&i>j\end{cases} fi,j= ik<jmin{xx=wi,j+fi,k+fk+1,j}0i<ji=ji>j

如果这时 w i , j w_{i,j} wi,j 同时满足四边形不等式和区间包含单调性,则可以使用四边形不等式优化。

推导过程:

首先可以证明二维数组 f f f 也满足四边形不等式,即

f i , j + f i ′ , j ′ ≤ f i , j ′ + f i ′ , j f_{i,j} + f_{i',j'} \leq f_{i,j'} + f_{i', j} fi,j+fi,jfi,j+fi,j

分类讨论:

① 若 i = i ′ ≤ j ≤ j ′ i = i'\leq j \leq j' i=ijj
f i , j + f i ′ , j ′ = f i ′ , j + f i , j ′ \begin{aligned} f_{i,j} + f_{i',j'} &= f_{i',j} + f_{i,j'}\end{aligned} fi,j+fi,j=fi,j+fi,j

② 若 i < i ′ ≤ j = j ′ i < i'\leq j = j' i<ij=j
f i , j + f i ′ , j ′ = f i , j ′ + f i ′ , j \begin{aligned} f_{i,j} + f_{i',j'} &= f_{i,j'} + f_{i',j}\end{aligned} fi,j+fi,j=fi,j+fi,j

③ 若 i < i ′ = j < j ′ i < i' =j < j' i<i=j<j

原不等式则转换为:
f i , j + f j , j ′ ≤ f i , j ′ + f j , j \begin{aligned} f_{i,j} + f_{j,j'} &\leq f_{i,j'} + f_{j, j} \end{aligned} fi,j+fj,jfi,j+fj,j

f j , j = 0 f_{j,j} =0 fj,j=0,又转化为:
f i , j + f j , j ′ ≤ f i , j ′ \begin{aligned} f_{i,j} + f_{j,j'} &\leq f_{i,j'} \end{aligned} fi,j+fj,jfi,j

对于所有 i i i,都有:
f i , i + 1 + f i + 1 , i + 2 = w i , i + 1 + w i + 1 , i + 2 + f i , i + f i + 1 , i + 1 + f i + 1 , i + 1 + f i + 2 , i + 2 = w i , i + 1 + w i + 1 , i + 2 ≤ w i , i + 2 ≤ f i , i + 2 \begin{aligned} f_{i,i+1} + f_{i+1,i+2} &= w_{i,i+1} + w_{i+1,i+2} + f_{i,i} + f_{i+1,i+1} + f_{i+1,i+1} + f_{i+2,i+2}\\&= w_{i,i+1} + w_{i+1,i+2}\\&\leq w_{i,i+2}\\&\leq f_{i, i+2}\end{aligned} fi,i+1+fi+1,i+2=wi,i+1+wi+1,i+2+fi,i+fi+1,i+1+fi+1,i+1+fi+2,i+2=wi,i+1+wi+1,i+2wi,i+2fi,i+2

k = max ⁡ i ≤ x ≤ j { x ∣ f i , j = w i , j + f i , x + f x + 1 , j } k=\max\limits_{i\leq x\leq j}\{x|f_{i,j} = w_{i,j} + f_{i,x} + f_{x+1,j}\} k=ixjmax{xfi,j=wi,j+fi,x+fx+1,j}

此时,若 k ≤ i ′ = j k\leq i' = j ki=j

假设 f k + 1 , j + f i ′ j ′ ≤ f k + 1 , j ′ f_{k+1,j} + f_{i'j'} \leq f_{k+1,j'} fk+1,j+fijfk+1,j 成立,则有

f i , j + f j , j ′ ≤ w i , j + f i , k + f k + 1 , j + f j , j ′ ≤ w i , j ′ + f i , k + f k + 1 , j + f j , j ′ ≤ w i , j + f i , k + f k + 1 , j ′ ≤ f i , j ′ \begin{aligned} f_{i,j} + f_{j,j'} &\leq w_{i,j} + f_{i,k} + f_{k+1,j} + f_{j,j'}\\&\leq w_{i,j'} + f_{i,k} + f_{k+1,j} + f_{j,j'}\\ &\leq w_{i,j}+f_{i,k}+f_{k+1,j'}\\&\leq f_{i,j'}\end{aligned} fi,j+fj,jwi,j+fi,k+fk+1,j+fj,jwi,j+fi,k+fk+1,j+fj,jwi,j+fi,k+fk+1,jfi,j

k > i ′ = j k > i' = j k>i=j

假设 f k + 1 , j + f i ′ j ′ ≤ f k + 1 , j ′ f_{k+1,j} + f_{i'j'} \leq f_{k+1,j'} fk+1,j+fijfk+1,j 成立,则有

f i , j + f j , j ′ ≤ f i , j + w j , j ′ + f j , k + f k + 1 , j ′ ≤ w i , j ′ + f i , j + f i ′ , k + f k + 1 , j ′ ≤ w i , j + f i , k + f k + 1 , j ′ ≤ f i , j ′ \begin{aligned} f_{i,j} + f_{j,j'} &\leq f_{i,j} + w_{j,j'} + f_{j,k} + f_{k+1,j'}\\&\leq w_{i,j'} + f_{i,j} + f_{i',k} + f_{k+1,j'} \\ &\leq w_{i,j}+f_{i,k}+f_{k+1,j'}\\&\leq f_{i,j'}\end{aligned} fi,j+fj,jfi,j+wj,j+fj,k+fk+1,jwi,j+fi,j+fi,k+fk+1,jwi,j+fi,k+fk+1,jfi,j

综述,通过数学归纳法可知:

f i , j + f j , j ′ ≤ f i , j ′ \begin{aligned} f_{i,j} + f_{j,j'} &\leq f_{i,j'} \end{aligned} fi,j+fj,jfi,j

④ 若 i < i ′ < j < j ′ i < i' <j < j' i<i<j<j

k 1 = max ⁡ i ≤ x ≤ j ′ { x ∣ f i ′ , j = w i ′ , j + f i ′ , x + f x + 1 , j } k_1=\max\limits_{i\leq x\leq j'}\{x|f_{i',j} = w_{i',j} + f_{i',x} + f_{x+1,j}\} k1=ixjmax{xfi,j=wi,j+fi,x+fx+1,j}
k 2 = max ⁡ i ′ ≤ x ≤ j { x ∣ f i , j ′ = w i , j ′ + f i , x + f x + 1 , j ′ } k_2=\max\limits_{i'\leq x\leq j}\{x|f_{i,j'} = w_{i,j'} + f_{i,x} + f_{x+1,j'}\} k2=ixjmax{xfi,j=wi,j+fi,x+fx+1,j}

k 1 ≤ k 2 k_1\leq k_2 k1k2,因为 i ≤ k 1 ≤ j ′ , i ′ ≤ k 2 ≤ j i \leq k_1 \leq j', i' \leq k_2\leq j ik1j,ik2j,所以 i ≤ k 1 ≤ k 2 ≤ j i\leq k_1\leq k_2 \leq j ik1k2j

所以 i ≤ k 1 ≤ j , i ′ ≤ k 2 ≤ j ′ i\leq k_1\leq j, i'\leq k_2 \leq j' ik1j,ik2j

此时,
f i , j + f i ′ , j ′ ≤ w i , j + w i ′ , j ′ + f i , k 2 + f k 2 + 1 , j + f i ′ , k 1 + f k 1 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 2 + f k 2 + 1 , j + f i ′ , k 1 + f k 1 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 2 + f i ′ , k 1 + f k 2 + 1 , j + f k 1 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 2 + f i ′ , k 1 + f k 1 + 1 , j + f k 2 + 1 , j ′ ≤ ( w i , j ′ + f i , k 2 + f k 2 + 1 , j ′ ) + ( w i ′ , j + f i ′ , k 1 + f k 1 + 1 , j ) ≤ f i , j ′ + f i ′ , j \begin{aligned} f_{i,j}+f_{i',j'} &\leq w_{i,j} + w_{i',j'} + f_{i,k_2} + f_{k_2+1,j} + f_{i',k_1} + f_{k_1+1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_2} + f_{k_2+1,j} + f_{i',k_1} + f_{k_1 + 1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_2} + f_{i',k_1} + f_{k_2+1,j} + f_{k_1 + 1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_2} + f_{i',k_1} + f_{k_1 + 1,j} + f_{k_2+1,j'}\\ &\leq (w_{i,j'} + f_{i,k_2} + f_{k_2+1,j'}) + (w_{i',j} + f_{i',k_1} + f_{k_1 + 1,j})\\ &\leq f_{i,j'}+f_{i',j} \end{aligned} fi,j+fi,jwi,j+wi,j+fi,k2+fk2+1,j+fi,k1+fk1+1,jwi,j+wi,j+fi,k2+fk2+1,j+fi,k1+fk1+1,jwi,j+wi,j+fi,k2+fi,k1+fk2+1,j+fk1+1,jwi,j+wi,j+fi,k2+fi,k1+fk1+1,j+fk2+1,j(wi,j+fi,k2+fk2+1,j)+(wi,j+fi,k1+fk1+1,j)fi,j+fi,j

k 1 > k 2 k_1> k_2 k1>k2,因为 i ≤ k 1 ≤ j ′ , i ′ ≤ k 2 ≤ j i \leq k_1 \leq j', i' \leq k_2\leq j ik1j,ik2j,所以 i ′ ≤ k 2 < k 1 ≤ j ′ i'\leq k_2 < k_1 \leq j' ik2<k1j

所以 i ′ ≤ k 1 ≤ j ′ , i ≤ k 2 ≤ j i'\leq k_1\leq j', i\leq k_2 \leq j ik1j,ik2j

此时,
f i , j + f i ′ , j ′ ≤ w i , j + w i ′ , j ′ + f i , k 1 + f k 1 + 1 , j + f i ′ , k 2 + f k 2 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 1 + f k 1 + 1 , j + f i ′ , k 2 + f k 2 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 1 + f i ′ , k 2 + f k 1 + 1 , j + f k 2 + 1 , j ′ ≤ w i , j ′ + w i ′ , j + f i , k 1 + f i ′ , k 2 + f k 2 + 1 , j + f k 1 + 1 , j ′ ≤ ( w i , j ′ + f i , k 1 + f k 1 + 1 , j ′ ) + ( w i ′ , j + f i ′ , k 2 + f k 2 + 1 , j ) ≤ f i , j ′ + f i ′ , j \begin{aligned} f_{i,j}+f_{i',j'} &\leq w_{i,j} + w_{i',j'} + f_{i,k_1} + f_{k_1+1,j} + f_{i',k_2} + f_{k_2+1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_1} + f_{k_1+1,j} + f_{i',k_2} + f_{k_2 + 1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_1} + f_{i',k_2} + f_{k_1+1,j} + f_{k_2 + 1,j'}\\ &\leq w_{i,j'} +w_{i',j} + f_{i,k_1} + f_{i',k_2} + f_{k_2 + 1,j} + f_{k_1 + 1,j'}\\ &\leq (w_{i,j'} + f_{i,k_1} + f_{k_1+1,j'}) + (w_{i',j} + f_{i',k_2} + f_{k_2 + 1,j})\\ &\leq f_{i,j'}+f_{i',j} \end{aligned} fi,j+fi,jwi,j+wi,j+fi,k1+fk1+1,j+fi,k2+fk2+1,jwi,j+wi,j+fi,k1+fk1+1,j+fi,k2+fk2+1,jwi,j+wi,j+fi,k1+fi,k2+fk1+1,j+fk2+1,jwi,j+wi,j+fi,k1+fi,k2+fk2+1,j+fk1+1,j(wi,j+fi,k1+fk1+1,j)+(wi,j+fi,k2+fk2+1,j)fi,j+fi,j

综述,由数学归纳法可知, f i , j + f i ′ , j ′ ≤ f i , j ′ + f i ′ , j f_{i,j}+f_{i',j'}\leq f_{i,j'} + f_{i',j} fi,j+fi,jfi,j+fi,j

根据 ①②③④,得,当 i ≤ i ′ ≤ j ≤ j ′ i\leq i' \leq j \leq j' iijj 时, f i , j + f i ′ , j ′ ≤ f i , j ′ + f i ′ , j f_{i,j}+f_{i',j'}\leq f_{i,j'} + f_{i',j} fi,j+fi,jfi,j+fi,j

假设 k i , j = max ⁡ i ≤ x ≤ j { x ∣ f i , j = w i , j + f i , x + f x + 1 , j } k_{i,j} = \max\limits_{i\leq x\leq j}\{x|f_{i,j}=w_{i,j}+f_{i,x}+f_{x+1,j}\} ki,j=ixjmax{xfi,j=wi,j+fi,x+fx+1,j}

则可以推出 k i , j k_{i,j} ki,j 单调

k i − 1 , j ≤ k i , j ≤ k i , j + 1 k_{i-1,j} \leq k_{i,j} \leq k_{i,j+1} ki1,jki,jki,j+1

证明:

i > j i > j i>j

k i − 1 , j = k i , j = k i , j + 1 = ∞ k_{i-1,j} = k_{i, j} = k_{i, j+1} = \infty ki1,j=ki,j=ki,j+1=

i = j i = j i=j

k i , j = 0 < ∞ = k i , j + 1 k i , j = 0 < ∞ = k i + 1 , j k_{i,j} = 0 < \infty = k_{i, j+1}\\k_{i,j}= 0<\infty = k_{i+1,j} ki,j=0<=ki,j+1ki,j=0<=ki+1,j

i < j i < j i<j

我们假设 f i , j , k = w i , j + f i , k + f k + 1 , j f_{i,j,k} = w_{i,j} + f_{i,k} + f_{k + 1, j} fi,j,k=wi,j+fi,k+fk+1,j

f i , j , k i , j = f i , j f_{i,j,k_{i,j}} = f_{i,j} fi,j,ki,j=fi,j

对于任意 k ≤ k ′ < j k\leq k' < j kk<j,有

f k + 1 , j + f k ′ + 1 , j + 1 ≤ f k + 1 , j + 1 + f k ′ + 1 , j f_{k + 1, j} + f_{k' + 1,j+1} \leq f_{k + 1, j+1} + f_{k' + 1, j} fk+1,j+fk+1,j+1fk+1,j+1+fk+1,j

等式两边增加 w i , j + f i , k + w i , j + 1 + f i , k ′ w_{i,j} + f_{i,k} + w_{i,j + 1} + f_{i,k'} wi,j+fi,k+wi,j+1+fi,k,得

w i , j + f i , k + w i , j + 1 + f i , k ′ + f k + 1 , j + f k ′ + 1 , j + 1 ≤ w i , j + f i , k + w i , j + 1 + f i , k ′ + f k + 1 , j + 1 + f k ′ + 1 , j w i , j + f i , k + f k + 1 , j + w i , j + 1 + f i , k ′ + f k ′ + 1 , j + 1 ≤ w i , j + 1 + f i , k + f k + 1 , j + 1 + w i , j + f i , k ′ + f k ′ + 1 , j f i , j , k + f i , j + 1 , k ′ ≤ f i , j + 1 , k + f i , j , k ′ f i , j , k − f i , j , k ′ ≤ f i , j + 1 , k − f i , j + 1 , k ′ \begin{aligned} w_{i,j} + f_{i,k} + w_{i,j + 1} + f_{i,k'} + f_{k + 1, j} + f_{k' + 1,j+1} &\leq w_{i,j} + f_{i,k} + w_{i,j + 1} + f_{i,k'} + f_{k + 1, j+1} + f_{k' + 1, j}\\ w_{i,j} + f_{i,k} + f_{k + 1, j} + w_{i,j + 1} + f_{i,k'} + f_{k' + 1,j+1} &\leq w_{i,j + 1} + f_{i,k} + f_{k + 1, j+1} + w_{i,j} + f_{i,k'} + f_{k' + 1, j}\\ f_{i,j,k} + f_{i,j+1,k'} &\leq f_{i,j + 1,k} + f_{i,j,k'}\\ f_{i,j,k} - f_{i,j,k'} &\leq f_{i,j+1,k} - f_{i,j+1,k'}\end{aligned} wi,j+fi,k+wi,j+1+fi,k+fk+1,j+fk+1,j+1wi,j+fi,k+fk+1,j+wi,j+1+fi,k+fk+1,j+1fi,j,k+fi,j+1,kfi,j,kfi,j,kwi,j+fi,k+wi,j+1+fi,k+fk+1,j+1+fk+1,jwi,j+1+fi,k+fk+1,j+1+wi,j+fi,k+fk+1,jfi,j+1,k+fi,j,kfi,j+1,kfi,j+1,k

所以, f i , j , k ′ ≤ f i , j , k f_{i,j,k'} \leq f_{i,j,k} fi,j,kfi,j,k 可以推出 f i , j + 1 , k ′ ≤ f i , j + 1 , k f_{i,j+1,k'} \leq f_{i,j+1,k} fi,j+1,kfi,j+1,k,即:
f i , j , k ′ ≤ f i , j , k → f i , j + 1 , k ′ ≤ f i , j + 1 , k f_{i,j,k'} \leq f_{i,j,k} \to f_{i,j+1,k'} \leq f_{i,j+1,k} fi,j,kfi,j,kfi,j+1,kfi,j+1,k

对于所有 k < k i , j k < k_{i,j} k<ki,j,都有 f i , j , k i , j = f i , j ≤ f i , j , k f_{i,j,k_{i,j}} = f_{i,j} \leq f_{i,j,k} fi,j,ki,j=fi,jfi,j,k

则对于所有 k < k i , j k< k_{i,j} k<ki,j,有 f i , j + 1 , k i , j ≤ f i , j + 1 , k f_{i,j+1,k_{i,j}} \leq f_{i,j+1,k} fi,j+1,ki,jfi,j+1,k

所以 k i , j ≤ k i , j + 1 k_{i,j} \leq k_{i,j+1} ki,jki,j+1

对于任意 i < k ≤ k ′ i < k\leq k' i<kk,有

f i , k + f i + 1 , k ′ ≤ f i , k ′ + f i + 1 , k f_{i, k} + f_{i + 1, k'} \leq f_{i, k'} + f_{i + 1, k} fi,k+fi+1,kfi,k+fi+1,k

等式两边增加 w i , j + f k + 1 , j + w i + 1 , j + f k ′ + 1 , j w_{i,j} + f_{k+1,j} + w_{i+1,j} + f_{k' + 1, j} wi,j+fk+1,j+wi+1,j+fk+1,j,得

w i , j + f k + 1 , j + w i + 1 , j + f k ′ + 1 , j + f i , k + f i + 1 , k ′ ≤ w i , j + f k + 1 , j + w i + 1 , j + f k ′ + 1 , j + f i , k ′ + f i + 1 , k w i , j + f i , k + f k + 1 , j + w i + 1 , j + f i + 1 , k ′ + f k ′ + 1 , j ≤ w i , j + f i , k ′ + f k ′ + 1 , j + w i + 1 , j + f i + 1 , k + f k + 1 , j f i , j , k + f i + 1 , j , k ′ ≤ f i , j , k ′ + f i + 1 , j , k f i , j , k − f i , j , k ′ ≤ f i + 1 , j , k − f i + 1 , j , k ′ \begin{aligned} w_{i,j} + f_{k+1,j} + w_{i+1,j} + f_{k' + 1, j} + f_{i, k} + f_{i + 1, k'} &\leq w_{i,j} + f_{k+1,j} + w_{i+1,j} + f_{k' + 1, j} + f_{i, k'} + f_{i + 1, k}\\ w_{i,j} + f_{i, k} + f_{k+1,j} + w_{i+1,j} + f_{i + 1, k'} + f_{k' + 1, j} &\leq w_{i,j} + f_{i, k'} + f_{k' + 1, j} + w_{i+1,j} + f_{i + 1, k} + f_{k+1,j}\\ f_{i,j,k} + f_{i+1,j,k'} &\leq f_{i,j,k'} + f_{i+1,j,k}\\ f_{i,j,k} - f_{i,j,k'} &\leq f_{i+1,j,k} - f_{i+1,j,k'}\end{aligned} wi,j+fk+1,j+wi+1,j+fk+1,j+fi,k+fi+1,kwi,j+fi,k+fk+1,j+wi+1,j+fi+1,k+fk+1,jfi,j,k+fi+1,j,kfi,j,kfi,j,kwi,j+fk+1,j+wi+1,j+fk+1,j+fi,k+fi+1,kwi,j+fi,k+fk+1,j+wi+1,j+fi+1,k+fk+1,jfi,j,k+fi+1,j,kfi+1,j,kfi+1,j,k

所以, f i , j , k ′ ≤ f i , j , k f_{i,j,k'} \leq f_{i,j,k} fi,j,kfi,j,k 可以推出 f i + 1 , j , k ′ ≤ f i + 1 , j , k f_{i+1,j,k'} \leq f_{i+1,j,k} fi+1,j,kfi+1,j,k,即:
f i , j , k ′ ≤ f i , j , k → f i + 1 , j , k ′ ≤ f i + 1 , j , k f_{i,j,k'} \leq f_{i,j,k} \to f_{i+1,j,k'} \leq f_{i+1,j,k} fi,j,kfi,j,kfi+1,j,kfi+1,j,k

对于所有 k < k i , j k < k_{i,j} k<ki,j,都有 f i , j , s i , j = f i , j ≤ f i , j , k f_{i,j,s_{i,j}} = f_{i,j} \leq f_{i,j,k} fi,j,si,j=fi,jfi,j,k

则对于所有 k < k i , j k< k_{i,j} k<ki,j,有 f i , j + 1 , s i , j ≤ f i + 1 , j , k f_{i,j+1,s_{i,j}} \leq f_{i+1,j,k} fi,j+1,si,jfi+1,j,k

所以 k i , j ≤ k i + 1 , j k_{i,j} \leq k_{i+1,j} ki,jki+1,j

综述, k i − 1 , j ≤ k i , j ≤ k i , j + 1 k_{i-1,j} \leq k_{i,j} \leq k_{i,j+1} ki1,jki,jki,j+1

所以, k i , j − 1 ≤ k i , j ≤ k i + 1 , j k_{i,j-1} \leq k_{i,j} \leq k_{i+1,j} ki,j1ki,jki+1,j

所以 f i , j f_{i,j} fi,j 转移方程可以转换为

f i , j = { min ⁡ k i , j − 1 ≤ k < k i + 1 , j { x ∣ x = w i , j + f i , k + f k + 1 , j } i < j 0 i = j ∞ i > j f_{i,j}=\begin{cases} \min\limits_{k_{i,j-1}\leq k< k_{i+1,j}}\{x|x=w_{i,j}+f_{i,k}+f_{k+1,j}\}&i<j\\ 0&i=j\\ \infty&i>j\end{cases} fi,j= ki,j1k<ki+1,jmin{xx=wi,j+fi,k+fk+1,j}0i<ji=ji>j

我们缩小了 k k k 的范围,从而缩小的计算量。

最终时间复杂度为 O ( n 2 ) O(n^2) O(n2)(原时间复杂度为 O ( n 3 ) O(n^3) O(n3)

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值