Spark实战演练:WordCount实例

本文详细介绍了如何在本地环境使用Spark进行WordCount实例的运行,包括解决可能出现的内存不足问题,进行Maven的clean package打包操作,并讲解了如何将打包后的jar文件上传到Linux服务器,以及执行相关运行脚本的步骤。
摘要由CSDN通过智能技术生成

   摘要:本文主要讲了如何使用Spark来运行一个wordCount实例

1、本地运行实例 

package com.lin.wordcount
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

/**
 * 本地运行Spark
 * 环境:Windows7
 * scala版本:2.11.8
 * Spark版本:1.6.1
 */
object WordCountLocal {

  def main(args: Array[String]): Unit = {
    /**
     * 第一步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息
     * 例如说通过setMaster来设置程序要连接的Spark集群的Master的URL
     * 如果设置为local,则代表Spark程序在本地运行,特别适合于配置条件的较差的人
     *
     */

    val conf = new SparkConf()
    conf.setAppName("wordCountLocal") //设置应用程序的名称,在程序运行的监控界面可以看到名称  
    conf.setMaster("local") //此时程序在本地运行,无需安装Spark的任何集群  

    /**
     * 第二步:创建SparkContext对象
     * SparkContext是Spark程序所有功能的唯一入口,无论是采用Scala,Java,Python等都必须有一个SparkContext
     * SparkContext核心作用:初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler,TaskScheduler,Scheduler
     * 同时还会负责Spark程序往Master注册程序等
     * SparkContext是整个Spark应用程序中最为至关重要的一个对象。
     */

    val sc = new SparkContext(conf) //创建SparkContext对象,通过传入SparkConf实例来定制Spark运行的具体参数和配置信息  

    /**
     * 第三步:根据具体的数据来源(HDFS,HBase,Local FS(本地文件系统) ,DB,S3(云上)等)通过SparkContext来创建RDD
     * RDD的创建基本有三种方式,根据外部的数据来源(例如HDFS),根据Scala集合,由其他的RDD操作产生
     * 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
     */

    //文件的路径,最小并行度(根据机器数量来决定)  
    //val lines:RDD[String]= sc.textFile("F://spark//spark-1.6.2-bin-hadoop2.6//README.md", 1)    //读取本地文件,并设置Partition = 1  
    val lines = sc.textFile("D://Java//spark//spark-1.6.1-bin-hadoop2.6//README.md", 1) //读取本地文件,并设置Partition = 1   //类型推导得出lines为RDD  
    /**
     * 第四步:对初始的RDD进行Transformation级别的处理࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值