摘要:本文主要讲了如何使用Spark来运行一个wordCount实例
1、本地运行实例
package com.lin.wordcount
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
/**
* 本地运行Spark
* 环境:Windows7
* scala版本:2.11.8
* Spark版本:1.6.1
*/
object WordCountLocal {
def main(args: Array[String]): Unit = {
/**
* 第一步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息
* 例如说通过setMaster来设置程序要连接的Spark集群的Master的URL
* 如果设置为local,则代表Spark程序在本地运行,特别适合于配置条件的较差的人
*
*/
val conf = new SparkConf()
conf.setAppName("wordCountLocal") //设置应用程序的名称,在程序运行的监控界面可以看到名称
conf.setMaster("local") //此时程序在本地运行,无需安装Spark的任何集群
/**
* 第二步:创建SparkContext对象
* SparkContext是Spark程序所有功能的唯一入口,无论是采用Scala,Java,Python等都必须有一个SparkContext
* SparkContext核心作用:初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler,TaskScheduler,Scheduler
* 同时还会负责Spark程序往Master注册程序等
* SparkContext是整个Spark应用程序中最为至关重要的一个对象。
*/
val sc = new SparkContext(conf) //创建SparkContext对象,通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
/**
* 第三步:根据具体的数据来源(HDFS,HBase,Local FS(本地文件系统) ,DB,S3(云上)等)通过SparkContext来创建RDD
* RDD的创建基本有三种方式,根据外部的数据来源(例如HDFS),根据Scala集合,由其他的RDD操作产生
* 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
*/
//文件的路径,最小并行度(根据机器数量来决定)
//val lines:RDD[String]= sc.textFile("F://spark//spark-1.6.2-bin-hadoop2.6//README.md", 1) //读取本地文件,并设置Partition = 1
val lines = sc.textFile("D://Java//spark//spark-1.6.1-bin-hadoop2.6//README.md", 1) //读取本地文件,并设置Partition = 1 //类型推导得出lines为RDD
/**
* 第四步:对初始的RDD进行Transformation级别的处理