Day10 2020.07.31&2020.08.01
二叉搜索树定义:
- 每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。
- 每个节点中的值必须小于(或等于)存储在其右子树中的任何值。
1.validate-binary-search-tree
判断给出的二叉树是否是一个二叉搜索树(BST)
class Solution {
public:
//二叉搜索树的中序遍历是有序的,从小到大
void InOrder(TreeNode* root,vector<int>& inSeq){
if(root){
InOrder(root->left,inSeq);
inSeq.emplace_back(root->val);
InOrder(root->right,inSeq);
}
}
bool isValidBST(TreeNode* root) {
vector<int> inSeq;
InOrder(root,inSeq);
//这个地方一定要判断,不然后面再判断是否有重复元素就会将[0]判定为false
if(inSeq.size()<2) return true;
vector<int> temp=inSeq;
sort(inSeq.begin(),inSeq.end());
if(temp==inSeq){
int tag=false;
for(vector<int>::iterator it=inSeq.begin();it!=inSeq.end();it++){
if(*it==*(it+1)) tag=true;
}
if(tag==false) return true;
else return false;
}
else return false;
}
};
2.validate-binary-search-tree
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
//若不在BST中则要返回一个新生成的TreeNode节点
if(!root) return new TreeNode(val);
if(val<root->val){
root->left=insertIntoBST(root->left,val);
}else{
root->right=insertIntoBST(root->right,val);
}
return root;
}
};
3.delete-node-in-a-bst
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if(!root) return root;
if(root->val>key) root->left=deleteNode(root->left,key);
else if(root->val<key) root->right=deleteNode(root->right,key);
else{
if(!root->left&&!root->right) return nullptr;
else if(root->left&&!root->right) return root->left;
else if(!root->left&&root->right) return root->right;
else{
//用root的直接后继或直接前驱(中序)代替root
//root的左子节点连接到右边最左节点即可
TreeNode* p=root->right;
while(p->left) p=p->left;
p->left=root->left;
return root->right;
}
}
return root;
}
};
4.balanced-binary-tree
class Solution {
public:
int Depth(TreeNode* root){
if(!root) return 0;
return max(Depth(root->left),Depth(root->right))+1;
}
bool isBalanced(TreeNode* root) {
if(!root) return true;
return isBalanced(root->left)&&isBalanced(root->right)&&abs(Depth(root->left)-Depth(root->right))<=1;
}
};
回溯法定义:
回溯法(backtrack)常用于遍历列表所有子集,是 DFS 深度搜索一种,一般用于全排列,穷尽所有可能,遍历的过程实际上是一个决策树的遍历过程。时间复杂度一般 O(N!),它不像动态规划存在重叠子问题可以优化,回溯算法就是纯暴力穷举,复杂度一般都很高。
核心就是从选择列表里做一个选择,然后一直递归往下搜索答案,如果遇到路径不通,就返回来撤销这次选择。
回溯算法模板:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
5.subsets
现在有一个没有重复元素的整数集合S,求S的所有子集
注意:给出的解集中不能出现重复的元素
- 回溯
class Solution {
public:
void backtrack(vector<int> s,int pos,vector<int> temp,vector<vector<int>>& res){
//pos即下次添加到集合中的元素位置索引
auto save=temp;
res.emplace_back(save);
for(int i=pos;i<s.size();i++){
temp.emplace_back(s[i]);
backtrack(s,i+1,temp,res);
temp.pop_back();
}
}
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int>> res;
vector<int> temp;
backtrack(S,0,temp,res);
sort(res.begin(),res.end());
return res;
}
};
- 牛客上面还有一个附加要求:你给出的子集中的元素必须按不下降的顺序排列。在遍历之前的原数组要按照元素大小排序;结果数组要按照素组长度排序。
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int>> res;
vector<int> temp;
sort(S.begin(),S.end());
backtrack(S,0,temp,res);
//如果要按照题目要求输出的话还需要对结果数组里面的元素按照size从小到大排序
//自定义比较函数
sort(res.begin(),res.end(),[](const vector<int>&a,const vector<int>&b)->bool{
return a.size()==b.size()?a<b:a.size()<b.size();
});
return res;
}
6.subsets-ii
给出一个可能包含重复元素的整数集合S,返回该整数集合的所有子集。
注意:给出的解集中不能包含重复的子集;你给出的子集中的元素要按非递减的顺序排列.
解题思路:首先先将S排序,然后在回溯的时候若为相同元素则跳过。
class Solution {
public:
void backtrack(vector<int> s,int pos,vector<int> temp,vector<vector<int>>& res){
auto record=temp;
res.emplace_back(record);
for(int i=pos;i<s.size();i++){
if(i!=pos&&s[i]==s[i-1]) continue;
temp.emplace_back(s[i]);
backtrack(s,i+1,temp,res);
temp.pop_back();
}
}
vector<vector<int> > subsetsWithDup(vector<int> &S) {
vector<vector<int>> res;
vector<int> temp;
sort(S.begin(),S.end());
backtrack(S,0,temp,res);
return res;
}
};
7.permutations
给出一组数字,返回该组数字的所有排列
例如:[1,2,3]的所有排列如下
[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2], [3,2,1].
以数字在数组中的位置靠前为优先级,按字典序排列输出。
class Solution {
public:
void backtrack(vector<int>num,vector<bool> visited,vector<int> temp,vector<vector<int>>& res){
if(temp.size()==num.size()){//返回条件,当临时结果和集合长度一致,才是全排列
auto record=temp;
res.emplace_back(record);
}
for(int i=0;i<num.size();i++){
if(visited[i]) continue;//已经添加过了,直接跳过
temp.emplace_back(num[i]);
visited[i]=true;
backtrack(num,visited,temp,res);
visited[i]=false;//移除元素
temp.pop_back();
}
}
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int>> res;
vector<int> temp;
//因为后面是直接修改visited里面的值,所以要先分配空间和赋值
vector<bool> visited(num.size(),false);//标记当前元素是否已经添加到结果中
backtrack(num,visited,temp,res);
return res;
}
};
8.permutations-ii
给出一组可能包含重复项的数字,返回该组数字的所有排列
例如;
[1,1,2]的排列如下:
[1,1,2],[1,2,1], [2,1,1].
class Solution {
public:
void backtrack(vector<int> num,vector<bool> visited,vector<int> temp,vector<vector<int>>& res){
if(temp.size()==num.size()){
auto record=temp;
res.emplace_back(record);
}
for(int i=0;i<num.size();i++){
if(visited[i]) continue;
//上一个元素与当前元素相同,并且没有访问过就跳过
if((i!=0&&num[i]==num[i-1])&&!visited[i-1]) continue;
temp.emplace_back(num[i]);
visited[i]=true;
backtrack(num,visited,temp,res);
visited[i]=false;
temp.pop_back();
}
}
vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int>> res;
vector<int> temp;
vector<bool> visited(num.size(),false);
sort(num.begin(),num.end());
backtrack(num,visited,temp,res);
return res;
}
};
9.combination-sum
给出一组候选数C和一个目标数T,找出候选数中加起来和等于T的所有组合。C中的数字在组合中可以被无限次使用.
注意:
题目中所有的数字(包括目标数T)都是正整数
你给出的组合中的数字 (a 1, a 2, … , a k) 要按非递增排序 (ie, a 1 ≤ a 2 ≤ … ≤ a k).
结解集中不能包含重复的组合
例如:给定的候选数集是[2,3,6,7],目标数是7
解集是:
[7]
[2, 2, 3]
class Solution {
public:
void backtrack(int pos,int target,vector<int> candidates,vector<int> temp,vector<vector<int>> &res){
if(target==0){
auto record =temp;
res.emplace_back(record);
}
for(int i=pos;i<candidates.size()&&target-candidates[i]>=0;i++){
temp.emplace_back(candidates[i]);
//i从当前开始是为了减去重复的
backtrack(i,target-candidates[i],candidates,temp,res);
temp.pop_back();
}
}
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<vector<int>> res;
vector<int> temp;
sort(candidates.begin(),candidates.end());
backtrack(0,target,candidates,temp,res);
return res;
}
};
10.letter-combinations-of-a-phone-number
给出一个仅包含数字的字符串,给出所有可能的字母组合。
数字到字母的映射方式如下:(就像电话上数字和字母的映射一样)
Input:Digit string “23”
Output:[“ad”, “ae”, “af”, “bd”, “be”, “bf”, “cd”, “ce”, “cf”].