poj1321 棋盘问题 DFS

棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 32239 Accepted: 16002

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1


跟八皇后问题很像,直接DFS,保证每一行列没有只放一个棋子


#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

int cou, n, k;
char mapp[15][15];
//visy用来标记当前列有没有放过棋子
bool visy[15], vis[15][15];

//dfs(dep, col)状态为,到dep行(dep行还没有做),dep行之前已经放了col个棋子,下一步...
void dfs(int dep, int col) {
	//到棋盘底部或者棋子放够数目了
	if (dep == n || col == k) {
		//只有棋子放够数目的时候才算一种方案
		if (col == k) {
			cou++;
		}
		return;
	}
	for (int j = 0; j < n; j++) {
		//当前位置是棋盘而且之前当前列没有放过棋子
		if (!vis[dep][j] && !visy[j]) {
			visy[j] = true;
			dfs(dep + 1, col + 1); //这一行放
			visy[j] = false;
		}
	}
	dfs(dep + 1, col);  //这一行不放
}

int main()
{
	while (~scanf("%d%d", &n, &k) && (n != -1 || k != -1)) {
		memset(visy, false, sizeof(visy));
		memset(vis, false, sizeof(vis));
		for (int i = 0; i < n; i++) {
			scanf("%s", mapp[i]);
			for (int j = 0; j < n; j++) {
				if (mapp[i][j] == '.') vis[i][j] = true;
			}
		}
		//cou记录方案种数
		cou = 0;
		dfs(0, 0);
		printf("%d\n", cou);
	}
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值