棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 32239 | Accepted: 16002 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
跟八皇后问题很像,直接DFS,保证每一行列没有只放一个棋子
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int cou, n, k;
char mapp[15][15];
//visy用来标记当前列有没有放过棋子
bool visy[15], vis[15][15];
//dfs(dep, col)状态为,到dep行(dep行还没有做),dep行之前已经放了col个棋子,下一步...
void dfs(int dep, int col) {
//到棋盘底部或者棋子放够数目了
if (dep == n || col == k) {
//只有棋子放够数目的时候才算一种方案
if (col == k) {
cou++;
}
return;
}
for (int j = 0; j < n; j++) {
//当前位置是棋盘而且之前当前列没有放过棋子
if (!vis[dep][j] && !visy[j]) {
visy[j] = true;
dfs(dep + 1, col + 1); //这一行放
visy[j] = false;
}
}
dfs(dep + 1, col); //这一行不放
}
int main()
{
while (~scanf("%d%d", &n, &k) && (n != -1 || k != -1)) {
memset(visy, false, sizeof(visy));
memset(vis, false, sizeof(vis));
for (int i = 0; i < n; i++) {
scanf("%s", mapp[i]);
for (int j = 0; j < n; j++) {
if (mapp[i][j] == '.') vis[i][j] = true;
}
}
//cou记录方案种数
cou = 0;
dfs(0, 0);
printf("%d\n", cou);
}
return 0;
}