【超详细教程】无需配置环境 | colab直接运行Stable Diffusion web UI并从civitai中导入lora模型

stable diffusion web ui地址

https://github.com/AUTOMATIC1111/stable-diffusion-webui

在项目readme里面找到Installation and Running,可以用colab在线使用,无需配置环境**(前提是可以连上Google)**
点击List of Online Services
在这里插入图片描述
跳转到有多种不同人维护的colab在线仓库

地址给到下面

https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services

这里我们选择第二个maintained by camenduru

地址给到下面

https://github.com/camenduru/stable-diffusion-webui-colab

在这里插入图片描述
下拉readme,可以看到如下表格,lite、stable、nightly三个版本的区别在上面有介绍,这里选择第一行stable版本的,点击后跳转进入colab
在这里插入图片描述
可以看到如下代码,只有一个代码块,colab运行代码之前要先登录,没有号用手机注册一个
在这里插入图片描述

登陆了先别急,要在代码执行程序里更改运行时类型,这样才能跑stable diffusion web ui
在这里插入图片描述
改成GPU
在这里插入图片描述
更改了之后就可以运行了(会警告非本地文件,选择仍要运行即可)
等待几分钟后,可以看到输出了两个链接,点下面这个后缀是.com的,点击后会自动跳转,等一会才能加载出

在这里插入图片描述
可以看到stable diffusion web ui界面显示在网页中了
在这里插入图片描述
下面就可以开始ai绘图了~
要载入lora模型绘图之前,要下载基础模型ChilloutMix。点击导航栏里的civitai
在这里插入图片描述
按照下面标的顺序填写信息,我们现在要下载的是ChilloutMix,ChilloutMix属于Checkpoint类型,勾选Search by term?,然后在Search Term里面输入ChilloutMix,然后点get list就会搜索到ChilloutMix这个模型,然后再选择需要的版本,然后再选择Model Filename。Trained Tags (if any)和Download Url都是自己填充的。
在这里插入图片描述
在这里插入图片描述
信息填写完毕后,点击4th - Download Model,后台就会下载模型,可以切回到colab页面里看下载进度。
在这里插入图片描述
在这里插入图片描述

等到下载完后,页面的左上角就可以切换到我们刚才下载的ChilloutMix模型了。

后面下载lora模型一是一样的方法,类型改成lora就行,然后根据自己想要的模型搜索term即可。
在这里插入图片描述
在civitai看到合适的模型,可以在此处复制别人的prompt

civitai网站

https://civitai.com/

在这里插入图片描述
全部粘贴到1所在的框中,然后点击2就可以解析粘贴的文本,自动填充。填充好后了点击generate就可以生成想要的图片~
在这里插入图片描述

### 关于 Flux 和 LoRA 技术的零基础入门教程 #### 了解基础知识 对于想要学习如何使用 Flux 和 LoRA 进行图像生成和模型微调的新手来说,理解这些工具的基础概念至关重要。Flux 是一种用于加速 AI 计算的工作站解决方案,而 LoRA (Low-Rank Adaptation) 则是一种高效的参数高效迁移学习方法。 #### 安装环境准备 为了能够顺利运行 Flux 和 LoRA 模型,在本地计算机上安装必要的软件包是第一步。通常情况下,推荐使用 Python 虚拟环境来管理依赖项,通过 pip 工具安装 PyTorch 及其扩展库 torchvision 等必要组件[^1]。 ```bash conda create -n flux_lora python=3.9 conda activate flux_lora pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` #### 获取配置预训练模型 获取已经预先训练好的 Flux 基础模型以及特定风格的 LoRA 插件非常重要。例如提到的老徐带来的这款人物 LoRA 就是一个很好的例子,它是在 Flux dev 模型基础上利用 SimpleTuner 训练得到的人像增强模块。可以通过 GitHub 或者其他开源平台下载对应的 `.safetensors` 文件。 #### 使用 Colab 平台简化流程 考虑到个人电脑可能不具备足够的 GPU 性能来进行长时间的任务处理,可以考虑借助 Google Colab 提供的强大云端计算资源。只需上传所需的数据集与模型文件至云盘空间内,再按照官方文档指引编写简单的 Jupyter Notebook 即可完成整个过程设置[^4]。 #### 微调模型适应新需求 当拥有了一定数量高质量图片作为样本之后,就可以尝试调整现有网络结构使之更好地满足个性化创作目的了。这里涉及到超参的选择如批次大小、迭代次数等;同时也需注意选择合适的损失函数指导优化方向。上述案例中的角色形象定制就是这样一个典型应用场景——让原本欧美特征明显的虚拟人设变得更加贴近东方审美标准而不失真实感[^2]。 #### 注意事项 最后值得注意的一点在于不同版本间可能存在兼容性差异,因此建议严格按照开发者给出的操作指南执行每一步骤操作。特别是有关于权重精度方面的要求,比如某些特殊变体仅支持 FP8 或 FP16 格式的输入数据格式转换等问题都需要提前做好功课加以解决[^3]。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值