“ 文档处理是人工智能应用领域中的重要环节,其业务需求复杂,技术实现难度高;因此,怎么处理复杂文档是每个技术人员都需要考虑的问题。”
文档处理在当前人工智能行业下是一个非常基础也非常重要的工作,不论是模型的训练和微调,还是以RAG检索增强,亦或者是在传统的搜索引擎(包括百度,谷歌这种搜索引擎;以及电商等内部平台的搜索需求)中都是必不可少的一个重要环节。
但面对复杂的文档格式和类型,文档处理的难度相当大;而且在不同的需求场景下,同样格式和内容的文档需要不同的处理方式;比如说在开放性问答场景和精确性的企业服务场景下,对文档处理的要求和质量是不一样的。
所以,今天我们就来讨论一下文档处理过程中存在的一些问题以及相对的解决方案和技术选型。
文档处理
关于文档处理我们需要从两个方面进行考虑,一个是业务场景,另一个是技术实现。
业务场景
先说业务场景,文档处理的业务场景有很多;上面所说的RAG,模型训练,搜索引擎等都需要文档处理;而在垂直领域,比如医疗,金融,法律等面对快速爆炸的知识密集场景中,文档处理依然是很重要的一环。
特别是面对多年积累的大量历史数据,怎么快速从这些历史数据中找到关键信息;除了搜索算法和大模型的应用之外,文档的前期处理是必不可少且非常重要的一环。
因为,对于未经过处理的数据,再强大的算法或模型都很难得到精确的查询或检索效果;所以,文档处理的方式,以及处理结果的质量都会成为影响数据召回的重要因素。
技术实现
技术实现也需要从多个角度进行说明和分析,主要包括不同文档的类型和技术实现两个方面。
文档类型
在文档处理领域中,不同的文档类型和内容需要使用不同的处理方式;当然,这里所说的文档并不只是指我们常见的word,pdf,md等文档,还包括数据库文档,网页文档,图片,表格等多种文档类型。
从形式来看,文档的类型多种多样,包括我们常见的office三件套,markdown文档,csv,数据库文档,网页,日志文件等。
但从技术的角度来看,不管什么形式的文档,主要都是以下三种格式:
- 结构化数据
- 半结构化数据
- 非结构化数据
结构化数据主要包括excel,csv,数据库文档,xml文档,日志文件等。
半结构化数据主要包括网页,mongdb,email等这种有部分是结构化数据,而部分是非结构化数据;比如说网页中的标签,h1,li;email的收件人,发件人等。
非结构化数据就是更常见的数据类型了,比如word,pdf,ppt,md,txt等;特别是word,pdf,md这种支持富文本,表格图片的文档格式;由于其复杂的文档结构,导致其在处理过程中会存在非常多的困难点;比如常见的文本,图片,表格同时存在的项目文档;以及充斥大量架构图,结构图和流程图的PDF文档等。
而在人工智能应用场景中,我们不但需要保证这些文档内容的连续性(比如表格拆分的问题),还需要保证其语义和结构性,比如目前对于存在大量结构图和流程图的文档处理效果都不怎么好。
因此,面对这些复杂的文档类型和内容,怎么进行有效性处理是很多企业和领域都需要思考和解决的问题。
技术方案
根据以上复杂的文档类型,我们需要使用不同的数据处理方案;下面我们就以结构化,半结构化和非结构化这三种类型进行说明。
结构化数据
在这三种数据类型中,结构化数据是最好处理的一种数据格式;不论是数据库,json数据,xml数据等;由于其有标准的格式,因此我们只需要根据其数据格式进行处理即可;而且由于计算机技术发展这些年,对这方面的数据处理技术已经非常成熟了。比如说python的pandas就非常适合处理数据库,json和csv等格式的数据。
半结构化数据
半结构化数据相对来说处理过程相对较复杂一点,但又不像非结构化数据那么复杂。
比如说以网页文档为例,在爬虫领域网页爬取是一项非常基础的功能;而对爬取之后的网页进行解析,可以使用正则表达式或一些三方网页解析库进行处理;其效果还不错。
非结构化数据
非结构化数据在文档处理领域中,属于技术难度最大,处理方式最复杂的一种数据格式。
非结构化数据处理复杂的原因就在于,上面所说的文档结构复杂,可能同时存在文字,图片,表格,流程图等多种不同的数据格式;而面对如此复杂的数据格式,再加上不同应用场景下对数据处理质量的要求;因此没有办法进行统一的处理;因此只能选择在处理过程中的部分环节进行一定的抽象。
比如说,对文档中的文字,图片,表格分别进行提取;然后再进行特定的处理;这种一般会选择多模态模型进行数据提取。
其次,对于一些图片中存在大量文字描述的内容,可以选择使用ORC等技术,把内容从图片中提取出来然后当成文本数据进行处理。
当然,也可以使用最简单的方式,通过多模态模型把整个文档进行概要总结;然后使用总结的概要作为结果进行应用。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈