OpenAI宣布开发新浏览器及对话式搜索产品NLWeb,挑战谷歌搜索引擎霸主地位。新浏览器由前谷歌Chrome核心开发者主导,将结合AI与自然语言处理,为用户提供智能化搜索体验。NLWeb通过与合作网站互动,支持食品、旅游等行业的会话式搜索服务,已引发广泛关注。此外,OpenAI计划与三星合作,将AI功能融入其设备中,拓展应用场景。谷歌面临司法部拆分Chrome及Android的压力,为OpenAI创造了竞争机会。然而,谷歌强烈反对此提议,称其损害消费者利益。OpenAI表示,将通过技术创新推动搜索领域革命,为用户提供更加便捷的服务,同时扩大其在人工智能领域的影响力。
谷歌与OpenAI在AI领域竞争日益激烈
谷歌与OpenAI在人工智能领域的竞争日益激烈。OpenAI近期推出了新版GPT-4o模型,迅速登上性能排行榜首位。然而,不到一天,谷歌发布了最新试验版模型Gemini-Exp-1121,重新夺回冠军宝座。Gemini-Exp-1121在代码能力、推理能力和视觉理解方面均有提升,特别是在视觉能力上表现突出。例如,在漫画理解任务中,该模型提供了更全面的回答,并善于使用小标题和加粗等方式突出关键信息。此外,在经典的逻辑推理题中,Gemini-Exp-1121也展现了出色的表现。与此同时,OpenAI在ChatGPT的最新测试版本中引入了“实时摄像”功能,包含实时录像、处理、语音模式集成和视觉识别能力,显示出其在多模态交互方面的探索。这场竞争推动了AI技术的快速发展,未来人们可能更多地通过语音和智能代理与聊天机器人进行交流。
人工智能代理的未来蓝图
Salesforce首席执行官马克·贝尼奥夫在接受采访时表示,人工智能的发展未来在于自主代理的应用,而非单纯扩大语言模型的规模。他认为,尽管语言模型如ChatGPT展示了AI的潜力,但技术的真正突破点是能够自主完成任务的代理,这些代理将在企业销售、营销及客户服务中发挥重要作用。贝尼奥夫认为,这些代理可显著提升生产力和企业效率,为员工赋能并推动收入增长。他还对人工智能行业过度宣传提出批评,认为一些人士夸大了技术能力,误导了公众对AI的理解。他强调,目前AI的能力仍远未达到科幻电影中的水平,但自主代理的逐步成熟将成为未来AI发展的关键方向。贝尼奥夫的观点为企业和技术界提供了理性、务实的发展思路,同时提醒人们警惕被不真实的技术宣传误导。
微软推出“Recall AI”功能预览版
微软在Windows 11最新测试版中推出了“Recall AI”功能,为Copilot Plus PC用户提供了捕捉操作截图并进行自然语言搜索的能力。用户可通过“Recall”应用快速追溯特定日期的工作内容,搜索结果利用AI匹配截图中的文本和视觉元素。“Recall”需用户主动启用,并支持时间线浏览和特定应用排除设置。此外,微软确保截图仅存储于本地设备,未加密备份将无法恢复,增强了隐私保护。功能还集成“Click to Do”,可对截图文本和图像执行AI操作如复制或保存。此功能旨在提高用户操作效率,但其初期仅支持高通处理器,未来将扩展至更多设备。微软对功能安全性进行了多次优化,并计划通过预览版用户反馈完善产品。
OpenAI探索AI安全测试新方法
OpenAI发布两篇论文,提出针对AI模型的“红队测试”新方法,以发现潜在安全漏洞并增强系统稳健性。研究强调,红队测试是评估AI风险的关键手段,通过与外部专家合作和自动化测试技术,模型可在广泛应用前被全面检验。自动化测试创新地分为目标生成和针对性测试两步,既拓展了测试范围,又确保深度分析。研究展示了在提示注入漏洞及生成有害内容的能力检测上的应用,显著提升了模型安全性。该方法已在DALL-E 2等模型开发中应用,为AI安全标准化提供了新工具。然而,研究也指出测试的局限性,包括模型演进带来的测试失效及人类评估需求的复杂化。OpenAI呼吁结合人类与自动化手段,共同推进AI安全评估。
开源模型Tülu 3挑战闭源AI巨头
艾伦人工智能研究所发布Tülu 3系列模型,目标缩小开源模型与闭源模型在训练后性能上的差距。Tülu 3性能媲美OpenAI、Anthropic和Google的顶尖模型,并支持微调功能,使企业和研究者能够保留核心数据的同时优化特定任务。Ai2发布了完整的数据集、训练方法和基础设施,强调开源透明性,吸引更多企业开发基于Tülu 3的解决方案。尽管开源模型在企业应用中的接受度曾落后于闭源模型,但Tülu 3通过增强微调能力和灵活数据混合方式,展示了强劲的竞争力。Ai2指出,透明性与可定制性将推动企业采用开源模型。此外,Ai2还发布了其他开源模型(如OLMoE和Molmo),在特定领域表现超越了GPT-4o等主流模型。Tülu 3标志着开源AI在企业应用领域迈出关键一步,为开发者和企业提供高效且灵活的解决方案。
企业AI代理全面落地
微软在2024年Ignite大会上发布10款企业AI代理,涵盖客户关系管理、供应链管理和财务对账等领域,标志着AI代理技术进入实际应用阶段。通过预构建模式,这些代理无需复杂定制,显著缩短部署时间并提升企业效率。微软的代理生态系统集成了1400个第三方连接器,支持1800多个大型语言模型的定制化应用,已吸引10万家组织参与创建或修改,部署率呈倍数增长。与竞争对手相比,微软的解决方案覆盖更广领域,并以其生产力应用生态和广泛客户群形成领先优势。微软还优化了定价模式,由按“每个令牌”收费转向按“成果价值”收费,进一步强化其实用性和商业吸引力。然而,谷歌、AWS等竞争者的快速追赶,可能对微软的领先地位构成挑战。微软的这一举措表明,企业AI代理的广泛应用正在加速,并逐步成为企业数字化转型的重要驱动力。
语音转录与实体识别的革新突破
语音识别技术持续发展,但在精确转录和实时提取上下文信息方面仍面临挑战,尤其在识别人名、地名及术语等实体时。针对这些难题,aiOla推出了Whisper-NER,一个集语音转录与命名实体识别(NER)于一体的开源AI模型。基于OpenAI Whisper架构开发,该模型通过Transformer技术从音频中直接识别实体,同时确保敏感数据的隐私保护。Whisper-NER显著提高了实体识别准确性,测试显示其错误率低于独立转录和识别系统,实体识别准确率提升约20%。该模型在医疗、客户服务、法律等注重隐私保护的实时应用场景中尤为适用。通过模糊处理敏感信息和自动化转录-识别流程,Whisper-NER有效解决了传统多步骤工作流程中的效率问题,为语音识别领域树立了新标杆。其开源特性更鼓励开发者基于此模型开展创新,为行业提供安全、高效的语音解决方案。
高效生成领域的技术突破
结构化生成任务日益成为大型语言模型(LLM)应用的重要环节,但传统上下文无关文法(CFG)方法因递归处理的高计算开销,限制了效率与可扩展性。XGrammar通过引入标记分类技术和优化内存使用,显著提升了结构化生成的性能。该系统将标记分为上下文无关和上下文相关两类,结合字节级下推自动机和自适应标记掩码缓存,预验证超过99%的标记,仅在必要时处理上下文相关标记,从而实现近零延迟。实验数据显示,XGrammar在JSON生成任务中速度较传统方法快100倍,且内存需求降至原始的0.2%。与Llama 3.1模型集成后,其性能提升达80倍,支持多平台部署,为实时和大规模场景提供了高效解决方案。XGrammar为AI系统的结构化生成设定了新标准,展现出强大的应用潜力和行业价值。
AI赋能工作变革与未来挑战
AWS AI副总裁Swami Sivasubramanian认为,AI的核心价值在于通过自动化重复性任务提高生产力,释放员工时间,让其专注于更有意义的工作。他指出,AI可以接管数据输入和日程安排等常规任务,从而为创新和高价值工作创造条件。尽管AI的应用可能在短期内引发岗位流失,但通过再培训,员工可以适应新的技能需求,从事更复杂的任务。AI不仅提高效率,还能缩短学习时间,让更多人胜任高要求的工作。他强调,AI在各行业展现了变革力,例如加速药物研发、优化客户服务、提升制造设计效率等。然而,人类的决策能力仍不可替代,AI应作为辅助工具提供数据支持。未来,AI和人类的协作将开启技术与创造力融合的新篇章,为企业和个人创造更高价值。Swami呼吁企业抓住生成式AI的机会,在生产力提升与技能再培训之间找到平衡,共同推动社会进步。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈