亚马逊开发多模态AI模型Olympus
亚马逊公司正在开发一款名为Olympus的多模态大语言模型,能够处理文本、图像和视频等多种数据类型。该模型预计将于近期在AWS re:Invent大会上发布,并通过Amazon Web Services(AWS)提供,可能集成于AWS Bedrock服务中。Olympus的推出旨在减少亚马逊对外部AI模型的依赖,提升其在生成式AI领域的竞争力。
联想发布面向中小企业的IT服务智能体
11月28日,联想在“WISE2024 商业之王”大会上推出业内首款专为中小企业设计的IT服务智能体——联想百应智能体。该智能体基于擎天智能IT引擎(擎天3.0),具备多模态交互、可视化思维链、多方案博弈、多智能体协作和全链路安全五大技术能力。首批应用涵盖AI营销、AI办公和AI服务三大领域,旨在帮助中小企业拓展市场、提升效率并降低运营成本。其中,AI营销可为企业定制官网营销助手,提升获客及转化效率;AI办公通过创新的三联屏交互界面,优化团队协作;AI服务则提供不限次的线上IT咨询,降低IT运维成本。联想百应智能体由此前已服务超过40万家中小企业的一站式IT服务平台联想百应升级而来。发布会上,联想集团高级副总裁戴炜表示,此次发布是联想与中小企业用户共创的开始,未来将持续优化,助力中小企业在AI变革中快速成长。
软银加码OpenAI投资计划
软银旗下愿景基金二期提出以1570亿美元估值,从OpenAI员工手中收购价值15亿美元股份,成为当前IPO市场低迷下的少有变现机会。OpenAI允许现任和前任员工均可参与此股份出售,需在12月24日前决定是否接受要约。软银首席执行官孙正义此前已投资5亿美元,现进一步加大投入,显示其在人工智能领域的扩张策略。OpenAI今年收入预计为37亿美元,但因研发投入巨大将亏损50亿美元。通过微软等渠道,OpenAI已筹集超130亿美元,并计划推动更多二级市场交易以缓解资金压力。软银此举不仅反映了对生成式AI未来市场的信心,也凸显了AI成为科技资本争夺的重点领域。
特斯拉Optimus机器人手部设计升级
特斯拉近期对其人形机器人Optimus的手部进行了重大升级,手部自由度提升至22个,前臂增加3个自由度,显著增强了机器人的灵活性和操作能力。手指和手掌新增柔软保护层,提升触觉感知能力,可更安全地处理精细或易碎物品。驱动器移至前臂,使手部结构更紧凑,动作更流畅。特斯拉计划在年底前完成触觉传感器的集成,实现基于肌腱的精细控制,并减轻前臂重量。未来所有新生产的Optimus机器人将配备这一优化设计,预示其在多领域的应用前景更加广阔。
Teuken-7B:支持24种欧盟官方语言的开源模型
欧盟OpenGPT-X研究项目近日发布了Teuken-7B语言模型,该模型拥有70亿参数,支持欧盟24种官方语言,并已在Hugging Face平台以开源形式提供。与主要以英语为核心的AI模型不同,Teuken-7B约50%的训练数据来自非英语的欧洲语言,旨在提升多语言处理能力。开发团队还创建了“欧洲LLM排行榜”,用于评估模型在各欧洲语言中的表现,推动多语言人工智能技术的发展。
AGI十年内实现的可能性
Meta首席人工智能科学家Yann LeCun在访谈中表示,人工通用智能(AGI)可能在未来10年内实现。他认为,单纯通过增强大型语言模型(LLM)的计算能力与数据规模无法达到人类级别智能,而需要全新的架构和系统,能够从现实世界中学习并具备层次化规划的能力。LeCun对LLM的当前进展态度谨慎,指出它们的智力尚不及猫。但他对未来技术突破保持乐观,预计在5至10年内可能见证AGI的诞生,这与OpenAI的Sam Altman等业内专家的预测相呼应。
Anthropic引领AI技术变革的新里程碑
Anthropic与AWS合作达成新高度,获得总计80亿美元投资,并深度参与硬件开发,优化AI训练效率。其Claude平台成为企业AI解决方案的核心,为制药、财税和搜索等领域提供突破性支持。新推出的Claude 3.5 Sonnet和Haiku模型在软件工程性能和用户体验上取得飞跃,Sonnet更在SWE-bench中刷新记录。Anthropic同时发布革命性计算机交互功能,展现AI界面操控的新可能。通过战略部署与开放共享,Anthropic持续引领负责任AI开发,为全球AI革命注入新动力。
SMAST:智能视频分析的未来
弗吉尼亚大学工程学院开发的语义和运动感知时空变换网络(SMAST),通过AI驱动实现精准行为识别,开辟视频监控新纪元。SMAST结合多特征选择性注意模型和运动感知2D位置编码算法,不仅能聚焦关键场景,还能追踪并理解动态动作间的关系。其应用涵盖公共安全、医疗诊断和自动驾驶,展现出显著社会效益。该系统在学术基准测试中表现卓越,重新定义了机器对人类动作的理解能力,为实时行为检测设定了新标准。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。