“The Performance of the LSTM-based Code Generated by Large Language Models (LLMs) in Forecasting Time Series Data”
对于一般金融从业人员来说,编写代码存在一定的门槛。人工智能发展火热的当下,使用AI模型进行金融和股票预测成为了一项必不可少的技能,那么对于没有编程经验的金融从业人员来说,是否可以借助大模型的能力自动生成预测分析代码呢?
今天的这篇文章详细分析了使用当前热门的大模型生成的代码进行模型开发及训练,并进行金融和股票预测的过程及结果,让我们来看看效果吧。
论文地址:https://arxiv.org/pdf/2411.18731
摘要
生成式AI,尤其是大型语言模型(LLMs),在多个领域应用广泛,尤其是在生成文本信息方面。本文探讨LLMs在自动化科学数据分析中生成深度学习模型和可执行代码的能力,特别是针对时间序列数据的分析。研究比较了ChatGPT、PaLM、LLama和Falcon等主流LLMs在生成深度学习模型的表现,实验控制了四个敏感性标准:明确性与具体性、目标与意图、上下文信息、格式与风格。
结果显示,使用LLMs生成的深度学习模型在性能上与手动优化的LSTM模型相当,且ChatGPT表现最佳。生成模型的质量受LLMs配置的“温度”参数影响,结果对数据分析师和从业者在利用生成式AI构建预测模型具有参考价值。
简介
大型语言模型(LLMs)如ChatGPT、LLaMa、Falcon和PaLM在日常任务中越来越受欢迎,应用于代码生成、邮件撰写等。根据Markets and Markets Research,生成性AI市场预计在2023至2028年间以35.6%的年复合增长率增长,从113亿美元增至518亿美元,2032年可能达到1918亿美元。生成性AI应用的年价值预计在2.6万亿至4.4万亿美元之间,可能提升人工智能整体影响力40%。Salesforce调查显示,61%的员工已使用或计划使用生成性AI,68%认为其能提升客户服务能力,67%认为能增强其他技术投资的效益。研究分析了四种大型语言模型:GPT-3.5-Turbo、Falcon、Llama 2和PaLM,应用于代码、文本和图像生成等任务。
本文探讨如何利用大型语言模型(LLMs)帮助专业数据分析师自动生成深度学习模型(如LSTM)及其可执行代码,降低学习复杂语法的门槛。LSTM在时间序列异常检测、URL检测和智能合约漏洞检测中表现优异,成为选择的主要原因。研究通过控制敏感性分析,评估LLMs生成的深度学习代码的质量,关注四个标准:清晰性与具体性、目标与意图、上下文信息、格式与风格。实验结果显示,LLMs能够生成与手动编码模型相当的模型,ChatGPT在金融和股票数据预测中表现最佳。LLMs的性能受温度参数影响,复杂提示未必优于简单提示,结果因设置不同而异。
研究问题
大型语言模型(如GPT-3)在文本生成方面表现出色,但提示工程的最佳实践仍在发展中。研究将进行系统的敏感性分析,以识别文本生成中最敏感的提示组件。按照Saltelli等人的工作流程,逐个变化输入因素,保持其他因素不变,以隔离其影响。结果将为提示工程师提供精确调优的指导。实验分为两部分:在Google Colab Pro上使用高RAM GPU运行LLM模型,随后在配备64GB内存的M1 Max Macbook Pro上分析输出。
实验设置
数据集
数据集涵盖2022年1月1日至4月23日的金融时间序列数据,来源于Yahoo Finance。包含多种股票和指数,按市值和行业选择,代表多个行业(科技、电商、汽车)和国家(美国、日本、香港、中国)。主要指数包括S&P 500、道琼斯、纳斯达克、日经225和恒生指数。包含大型科技公司(如苹果、微软)、电商巨头(如亚马逊、阿里巴巴)和汽车制造商(如特斯拉)。目的是测试LLM生成模型在不同数据集上的表现。
LLMs设置
LLM的响应可通过温度控制、top-p参数和最大token大小进行调节。温度接近1时,响应随机性增加;低温度输出更一致但缺乏多样性。top-p值为0.4时,考虑40个最可能的词或短语。max_token_size限制为2048个token,影响模型分析的范围。实验中不同温度设置对模型表现的影响显著。
提示词工程
研究目的:探讨基于深度学习的LLM模型在时间序列预测中的有效性,并评估通过有效的提示工程提升模型表现的可行性。
提示工程的控制标准:
-
清晰性和具体性(CS):低、中、高三个级别。
-
目标和意图(OI):低、中、高三个级别。
-
上下文信息(CI):低、中、高三个级别。
-
提示的格式和样式(FS):低、中、高三个级别。
每个标准的具体描述:
-
CS:从模糊到明确的任务描述。
-
OI:从不清晰的目标到明确的目标和意图。
-
CI:从缺乏上下文到提供详细背景信息。
-
FS:从提示格式不清晰或不一致到提示语言结构良好,格式适当,术语使用恰当。
评估指标
实验中使用的性能指标是均方根误差(RMSE)。RMSE计算模型预测值与真实值之间的平方差的均值的平方根。RMSE值越低,模型性能越好,预测值与真实值越接近。
实验程序
为评估大型语言模型(LLMs)在生成深度学习模型以分析时间序列数据的表现,设计了一系列根据标准和敏感性水平的提示。这些提示旨在为不同敏感性水平的主流LLMs提供输入。将提示提供给每个LLM,收集其响应,编译并执行生成的代码,最终捕获均方根误差(RMSE)以进行比较。
提示设计的敏感性分析
设计了11个从简单到复杂的敏感性分析提示,基于成对敏感性分析。成对分析是通过系统性比较每个项目与其他项目来评估多个标准的方法。该分析帮助评估特征的质量、重要性或适用性。使用颜色编码(绿色、高敏感性;橙色、中敏感性;红色、低敏感性)来表示敏感性水平。
手工创建和优化模型
实验在Apple M1 MAX上进行,内存64GB,使用GPU。数据集分为80%训练和20%测试。数据预处理使用MinMaxScaler,将特征范围缩放至0到1,并准备成长度为5的序列以预测下一天的数据。模型为手动创建的LSTM架构,使用TensorFlow,包含1个LSTM层,50个单元,激活函数为’relu’。训练100个epoch,批量大小为1,优化器为’adam’,损失函数为’mse’。超参数通过多次实验观察选择,手动创建的预处理和模型构建对LLMs无关。
实验结果
表4展示了基于LLM生成的深度学习模型在时间序列数据分析中的表现,使用RMSE值评估。PaLM模型在BABA股票上RMSE最低为0.0023,Falcon在GSPC股票上为0.0041。GPT 3.5在八个股票上表现最佳,但手动优化模型在所有股票上RMSE最低。表4中,最佳RMSE值用灰色高亮,所有模型中最佳值用深色高亮,NA表示LLM生成的模型无效,可能因幻觉问题导致。各LLM生成模型的平均表现相近,GPT 3.5在提示9和10上表现优于其他模型,除GSPC和BABA外。GPT 3.5在提示8、9、10下生成最佳模型,LLama 2在提示8下表现最佳,PaLM在提示7、8、9下表现较好,Falcon结果混杂。GPT 3.5在不同数据集上表现最佳,提示8、9的清晰性、目标明确性和格式要求高,能生成更准确的模型。手动优化模型的准确性高于LLM生成模型,且仅创建了一个针对所有数据集的优化模型。图1显示了手动LSTM模型在不同数据集上的RMSE值。
手动优化模型在DJI、N225和AMZN数据集上表现优于LLM生成的模型。LLM生成的模型在GSPC、IXIC、HSI、AAPL、MSFT、BABA和TSLA数据集上表现优于手动优化模型。比较结果基于最佳RMSE值,提示的变异性也是重要指标。提示8、9和10在大多数情况下表现最佳,建议高设置清晰度、目标和格式,使用GPT 3.5生成深度学习模型,以实现与手动模型相当的时间序列预测效果。
固定/一致的LLM配置
表4的结果基于表2中LLMs参数的配置和设置,经过实证微调以获得最佳结果。表5使用固定参数(温度=0.1,最大token_size=1024,top_p=0.6)重复实验,减少生成响应的随机性。GPT 3.5在九个股票代码中表现最佳,MSFT的RMSE最低为0.0357。较低的温度值提高了模型的准确性,GPT仍然优于其他LLMs。简单提示(如提示2、3、4)生成的GPT模型表现更佳,保持一致的标准(清晰度、客观性、上下文信息、格式和风格)。在时间序列数据集上观察到类似的结果,整体与表4一致。表4和表5显示,低温度参数下模型表现稍好。Falcon模型在温度0.7时生成的有效模型数量高于0.1,表明高温度增加了探索性。对于GPT 3.5,低温度(0.1)下无效模型数量较少,简单提示产生更连贯的响应。复杂提示在高温度下生成多样化响应,但可能导致不清晰的信息输出。
生成模型的模型体系结构
LSTM模型性能差异与架构(层数、节点数等)密切相关,架构配置包括LSTM层数、单位数、激活函数、批量大小和训练轮数。手动优化模型为1层50个节点,激活函数为“relu”,批量大小为1,训练轮数为100。LLM生成的模型大多为1或2层LSTM,节点数差异显著,PaLM和falcon使用较多节点(128、100、64),而LLama 2和GPT 3.5使用50个节点,后者表现更佳。批量大小方面,LLama 2和GPT 3.5通常为32,而手动模型为1,较小的批量大小有助于更深层次的训练。所有LLM的训练轮数大多为100、50或10,PaLM的模型均为100轮。总结:GPT 3.5和LLama 2生成的模型架构与手动模型相似,PaLM和falcon的架构差异较大。大多数LLM生成的LSTM模型层数为1或2,与手动模型一致。
模型准确性关键参数为节点数,PaLM和Falcon使用128个节点,而GPT 3.5和Llama 2使用50个节点,后者在设置上更优。批量大小也是影响准确性的因素,表现最佳的LLM使用批量大小32,而手动优化模型使用批量大小1,尽管小批量可能导致过拟合。
限制
本文假设普通用户对简单的深度学习模型(如LSTM)更感兴趣,复杂架构的模型难以构建和调优。为避免因模型复杂性引入的偏见,本文保持模型架构简单,以确保结果的公正比较。研究专注于金融数据,避免扩展到其他领域以防文献冗长和混乱。认为普通研究者对深入分析的兴趣有限,因此只关注金融领域数据分析的基本需求。
总结
本文通过控制实验研究不同提示对生成深度学习模型在金融时间序列预测中的影响,首先优化了手动LSTM模型。提示的控制标准包括清晰性、目标意图、上下文信息和格式风格,敏感度分为低、中、高。结果显示,简单提示和复杂提示在生成准确预测模型方面表现相当,且温度参数直接影响模型的准确性。LLM生成模型的RMSE值表现强劲,且在复杂数据集上与手动模型的性能差异显著。不同LLM生成的模型架构差异明显,提示工程仍是深度学习任务的重要因素。研究结果对缺乏编程经验的数据分析师和从业者尤为有用,建议进一步比较LSTM与ARIMA等传统模型。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈