前期介绍过很多语音合成的模型,比如ChatTTS,微软语音合成大模型,字节跳动自家发布的语音合成模型Seed-TTS。其模型随着技术的不断发展,模型说话的声音也越来越像人类,虽然 seed-tts 可以进行语音合成等功能,但是其模型并没有开源,本期介绍的MaskGCT文本转语音模型是一个开源的模型,不仅可以生成语音,还可以模仿任何人说话的声音,且可以进行语气的转换。
大规模的文本转语音(TTS)系统通常被划分为自回归系统与非自回归系统。自回归系统虽隐式地对时长予以建模,然而在鲁棒性层面呈现出一定的短板,且时长的可控性匮乏。非自回归系统于训练期间,需要文本和语音之间的显性对齐信息,并对语言单位(诸如音素)的时长进行预测,此举或许会折损其自然度。而 Masked Generative Code Transformer(MaskGCT),此乃一个全然非自回归的 TTS 模型,它既无需文本和语音监督之间的显性对齐信息,也无需音素级时长预测。
MaskGCT 属于一个两阶段模型:在第一阶段,该模型凭借文本预测从语音自监督学习(SSL)模型中萃取的语义标记;在第二阶段,模型对以这些语义标记为条件的声学标记予以预测。MaskGCT 遵循掩码和预测的学习范式。在训练进程中,MaskGCT 会依据给定的条件和提示,学习预测被遮蔽的语义或声学标记。在推理过程里,该模型能够以并行的方式生成指定长度的标记。针对 10 万小时的自然语音展开的实验表明,MaskGCT 在质量、相似度以及可理解性等方面,皆胜于当下最为先进的零样本 TTS 系统。
MaskGCT 由四个主要部分组成:
(1)语音语义表示编解码器将语音转换为语义标记;
(2)文本到语义模型使用文本预测语义标记并提示语义标记;
(3)语义到声学模型根据语义标记预测声学标记;
(4)语音声学编解码器根据声学标记重建语音波形。
MaskGCT模型根据用户提供的声音与文本,识别输入数据的语音语调,通过输入其他的文本,合成具有相同语音语调的声音。
在很多自媒体创作中,很多配音都是合成的声音,若是自己拿稿进行配音,不仅需要重复调整,还需要花费大量的时间与精力,而使用MaskGCT模型,就没有这个担忧,直接让模型学习下自己的语音语调,然后就可以一次性输入自己的文案,让模型进行配音了,这样就大大节省了人工配音的时间成本(更不需要一个专业的录音设备)
MaskGCT模型不仅可以模仿说话者的声音,也可以根据需要调整说话人的情绪,比如高兴的,生气等,这样就可以输入MaskGCT模型多段文案,然后控制每段文案的情绪,就可以得到完美的配音了。
当然MaskGCT模型也可以针对原始语音进行调整修改,可以直接修改原始语音的文案,让MaskGCT模型生成其他的语音。更多使用场景可以到MaskGCT模型 GitHub 上面查看。而官方也放出了在线体验地址,可以进行在线体验。
https://maskgct.github.io/https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct/README.mdhttps://voice.funnycp.com/
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈