AI Agent(智能体)被定义为能够感知环境、做出决策并采取行动的人工智能实体。受美国汽车工程师学会(SAE)提出的自动驾驶六个级别启发,在论文**《Levels of AI Agents: from Rules to Large Language Models》**中,作者把人工智能智能体也基于效用和强度分为以下级别:
-
L0—— 无人工智能,只有工具(具备感知能力)加上行动
-
L1—— 使用基于规则的人工智能
-
L2—— 用基于模仿学习(IL)/ 强化学习(RL)的人工智能替代基于规则的人工智能,并增加推理和决策功能
-
L3—— 用基于大型语言模型(LLM)的人工智能替代基于 IL/RL 的人工智能,另外设置记忆和反思模块
-
L4—— 在 L3 的基础上,促进自主学习和泛化
-
L5—— 在 L4 的基础上,添加个性(情感 + 性格)和协作行为(多智能体)
可以把AI Agents的五个能力级别用下图来表示,我们来对这张图做简单理解:
图中展示了AI智能体的五个级别,并从不同的维度对不同级别AI智能体的能力与性能进行了定义与描述。图表从左至右详细说明了每个级别的技术手段、性能、能力、关键特性、使用案例、以及领域的应用情况。
以下是对每个级别的简单分析和理解:
Level 0: No AI (无AI)
-
技术手段:无AI,仅基于简单的规则和操作。
-
性能:无AI,无法执行智能行为。
-
能力:无AI能力,仅执行预定义的规则和操作。
-
关键特性:无智能行为,没有自主决策能力,完全依赖于预定义的规则。
-
用例场景:无。
Level 1: Rule-Based AI + Tools (基于规则的AI + 工具)
-
技术手段:基于规则的AI与工具组合,完成简单的步骤序列。
-
性能:等同于未具备技能的初级人类。
-
能力:仅能执行按照明确步骤设定的任务。
-
关键特性:遵循预定义规则完成任务,缺乏应对变化的能力。
-
用例场景:例如使用语音助手来执行特定指令(如打开应用或读邮件)。
Level 2: IL/RL-Based AI + Tools (基于监督学习/强化学习的AI + 工具)
-
技术手段:通过监督学习和强化学习驱动,带有推理和决策能力。
-
性能:等同于具备50%技能的成年人。
-
能力:能够在用户定义的任务范围内进行推理和执行决策。
-
关键特性:可以在特定的领域中,通过数据反馈进行自动调整和改进,但范围有限。
-
用例场景:例如天气查询、简单的对话式AI,可以根据输入完成预定任务
Level 3: LLM-Based AI + Tools (基于大型语言模型的AI + 工具)
-
技术手段:基于大型语言模型(LLM),具备意图、行动、推理、决策、记忆与反思的能力。
-
性能:等同于具备90%技能的成年人。
-
能力:具备自动化任务的战略能力,可以通过工具自动规划任务并根据反馈调整执行步骤。
-
关键特性:在用户定义的任务下,能够自主完成复杂任务,具备较强的推理能力和记忆能力。
-
用例场景:AI能够自主规划并执行任务,例如通过多轮对话完成复杂的用户需求。
Level 4: LLM-Based AI + Tools + Autonomous Learning**(基于大型语言模型的AI + 工具,自主学习与泛化)**
-
技术手段:基于LLM和工具,具备自我学习、泛化和推理能力,记忆与反思进一步增强。
-
性能:等同于99%技能的成年人,接近人类顶尖专家的水平。
-
能力:能够通过上下文感知,提供高度个性化的服务,主动满足用户需求。
-
关键特性:具备深度理解和记忆功能,可以在复杂环境中提供最优解决方案或服务。
-
用例场景:个性化虚拟助手能够根据用户需求主动调整和优化行为。
Level 5: Superhuman AI (超人类AI)
-
技术手段:基于LLM与多智能体协作的AI,具备超越人类的推理、记忆、反思、自主学习和决策能力,情感、个性与协作能力也进一步发展。
-
性能:超越100%技能的成年人,展现出超人类智能。
-
能力:具备真正的数字化人格,能够在人类的角色中执行任务,确保安全与可靠性。
-
关键特性:AI能够在复杂的社交环境中代表用户完成任务,并与他人交互。
-
使用案例:能够代替用户进行交互,安全且可靠地完成复杂任务。
这里展示了AI智能体的五个级别,从最基础的规则驱动系统到潜在的超级智能,逐步提升了AI的能力和应用范围。每个级别的性能与功能均依赖于不同的技术手段,展示了AI逐渐从简单的任务自动化向复杂的、自主学习的系统发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。