-
LangChain官方示例教程(Build a Simple LLM Application):python.langchain.com/docs/tutori…
- 将该官方示例教程适当调整及优化
- 依赖
shell
代码解读
复制代码
pip install langchain
# 接入ollama本地大模型
pip install langchian-ollama
# 接入兼容OpenAI接口的国产大模型
pip install langchain-openai
提示词
输入
- 提示词主要有三种角色,LangChain有相应的Message类
python
代码解读
复制代码
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
# 原始写法
messages = [
{"role": "system", "content": "将下面的内容翻译成 英语"},
{"role": "user", "content": "你好,吃了吗?"},
{"role": "assistant", "content": "Hello, have you eaten yet?"},
]
# 使用消息类
messages = [
SystemMessage(content="将下面的内容翻译成 英语"),
HumanMessage(content="你好,吃了吗?"),
AIMessage(content="Hello, have you eaten yet?"),
]
# 另一种写法
messages = [
("system", "将下面的内容翻译成 英语"),
("human", "你好,吃了吗?"),
("ai", "Hello, have you eaten yet?"),
]
- Message类的常用方法
python
代码解读
复制代码
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
message = AIMessage(content="Hello, have you eaten yet?")
# 以下两个方法,SystemMessage、HumanMessage、AIMessage均适用
# 打印输出
message.pretty_print()
# Message继承Pydantic,可以使用Pydantic方法
print(message.model_dump_json())
模板
- 使用"{xxx}"占位
python
代码解读
复制代码
from langchain_core.prompts import ChatPromptTemplate
# 输入
inputs = {"language": "英语", "text": "你好,吃了吗?"}
# 定义模板
template = ChatPromptTemplate(
[("system", "将下面的内容翻译成 {language} "), ("human", "{text}")]
)
# 填充模板
result = template.invoke(inputs)
# result结果如下:
# messages = [
# SystemMessage(content="将下面的内容翻译成 英语", additional_kwargs={}, response_metadata={}),
# HumanMessage(content="你好,吃了吗?", additional_kwargs={}, response_metadata={}),
# ]
接入大模型
实例化大模型
- 详情看之前的文档:LangChain接入本地/国产大模型
- ollama本地大模型
python
代码解读
复制代码
from langchain_ollama import ChatOllama
# ollama大模型
llm = ChatOllama(base_url="http://localhost:11434", model="qwen2.5:latest")
- 兼容OpenAI接口的大模型
python
代码解读
复制代码
from langchain_openai import ChatOpenAI
# 兼容OpenAI接口的国产大模型(如:阿里云、火山、腾讯云等)
llm = ChatOpenAI(
openai_api_base="各个大平台兼容OpenAI的地址",
openai_api_key="xxx-xxx",
model_name="模型名称/endpoint等"
)
- 调用方式
python
代码解读
复制代码
from langchain_ollama import ChatOllama
from langchain_core.messages import HumanMessage
# ollama大模型
llm = ChatOllama(base_url="http://localhost:11434", model="qwen2.5:latest")
# 提示词
messages = [HumanMessage(content="你好,吃了吗?")]
result = llm.invoke(messages)
主线(模板+大模型)
python
代码解读
复制代码
from langchain_ollama import ChatOllama
from langchain_core.prompts import ChatPromptTemplate
# 输入
inputs = {"language": "英语", "text": "你好,吃了吗?"}
# 模板
template = ChatPromptTemplate(
[("system", "将下面的内容翻译成 {language} "), ("human", "{text}")]
)
# 大模型
llm = ChatOllama(base_url="http://localhost:11434", model="qwen2.5:latest")
# 调用
# result = template.invoke(inputs)
# result = llm.invoke(result)
# LangChain写法
chain = template | llm
result = chain.invoke(inputs)
输出转换
输出转换器
- 转换成特定格式可以更好得进行业务串联
python
代码解读
复制代码
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain_core.messages import AIMessage
# 模拟大模型返回的文本消息
message = AIMessage(content='{"name": "Alice", "age": 30}')
# 字符串输出解析器
str_parser = StrOutputParser()
result = str_parser.invoke(message)
print(type(result)) # <class 'str'>
print(result) # {"name": "Alice", "age": 30}
# Json输出解析器(代码中呈现为字典)
json_parser = JsonOutputParser()
result = json_parser.invoke(message)
print(type(result)) # <class 'dict'>
print(result) # {'name': 'Alice', 'age': 30}
主线(模板+大模型+输出)
python
代码解读
复制代码
from langchain_ollama import ChatOllama
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
# 输入
inputs = {"language": "英语", "text": "你好,吃了吗?"}
# 模板
template = ChatPromptTemplate(
[("system", "将下面的内容翻译成 {language} "), ("human", "{text}")]
)
# 大模型
llm = ChatOllama(base_url="http://localhost:11434", model="qwen2.5:latest")
# 输出转换器
parser = StrOutputParser()
# 调用
# result = template.invoke(inputs)
# result = llm.invoke(result)
# result = parser.invoke(result)
# LangChain写法
chain = template | llm | parser
result = chain.invoke(inputs)
其他补充
模板
- "placeholder"可替换列表
python
代码解读
复制代码
from langchain_core.prompts import ChatPromptTemplate
template = ChatPromptTemplate(
[("system", "你是导游,回答用户提出的问题"), ("placeholder", "{conversation}")]
)
inputs = {
"conversation": [
("human", "福州"),
("ai", "福州是一个....."),
("human", "什么季节去合适?"),
],
}
# 填充模板
messages = template.invoke(inputs)
# messages = [
# SystemMessage(content="你是导游,回答用户提出的问题", additional_kwargs={}, response_metadata={}),
# HumanMessage(content="福州", additional_kwargs={}, response_metadata={}),
# AIMessage(content="福州是一个.....", additional_kwargs={}, response_metadata={}),
# HumanMessage(content="什么季节去合适?", additional_kwargs={}, response_metadata={}),
# ]
- 多个占位符则使用字典一一对应即可
python
代码解读
复制代码
from langchain_core.prompts import ChatPromptTemplate
template = ChatPromptTemplate(
[("system", "你是{role},回答用户提出的问题"), ("placeholder", "{conversation}")]
)
inputs = {
"role": "导游",
"conversation": [
("human", "福州"),
("ai", "福州是一个....."),
("human", "什么季节去合适?"),
],
}
messages = template.invoke(inputs)
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈