[Nature Medicine]应用于疾病诊断辅助的通用医学大模型MedFound - 北医三院&北邮

A generalist medical language model for disease diagnosis assistance | Nature Medicine

https://www.nature.com/articles/s41591-024-03416-6

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何利用大规模通用语言模型(LLM)来辅助疾病诊断,以提高诊断的准确性和效率。

  2. 研究难点:该问题的研究难点包括:LLM在临床诊断中的有效性尚未得到充分验证;现有的LLM模型缺乏对医学知识的广泛编码和实际临床案例的训练;如何确保LLM的输出与临床实践和标准一致。

  3. 相关工作:该问题的研究相关工作包括:近年来预训练语言模型(PLMs)在自然语言处理(NLP)领域的显著进展;已有的医学领域特定PLMs,如ClinicalBERT、NYUTron、GatorTron和BioGPT,展示了在医学预测分析中的潜力;但大多数研究集中在医学问答和对话任务上,缺乏对临床诊断推理能力的全面开发。

研究方法

这篇论文提出了MedFound,一种大规模通用医学大语言模型,用于解决疾病诊断辅助问题。具体来说,

  1. 预训练:首先,在包含63亿文本令牌的大规模医学语料库(MedCorpus)上进行预训练。MedCorpus来自四个数据集:MedText、PMC-CR、MIMIC-III-Note和MedDX-Note。这些数据集涵盖了广泛的医学知识和实际临床案例。

  2. 微调:其次,使用包含诊断理由演示的医学记录数据集(MedDX-FT)对MedFound进行微调,以模仿医生的诊断推理过程。通过自举策略增强LLM自动生成高质量诊断理由的能力。

  3. 对齐:最后,引入统一的偏好对齐框架(PA),将LLM与标准临床实践对齐。该框架包括两类偏好:诊断层次偏好和有用性偏好。诊断层次偏好通过国际疾病分类(ICD)-10树的层次结构指导LLM;有用性偏好通过专家注释评估诊断理由的有用性。

实验设计

  1. 数据收集:构建了三个数据集用于开发和评估MedFound-DX-PA:MedCorpus用于预训练,MedDX-FT用于微调和对齐,MedDX-Bench用于评估。MedDX-Bench包括MedDX-Test、MedDX-OOD和MedDX-Rare三个临床数据集。

  2. 样本选择:MedDX-Test数据集包含11,662条医学记录,覆盖八个专业的常见疾病。MedDX-OOD数据集包含23,917条常见疾病的记录,MedDX-Rare数据集包含20,257条罕见疾病的记录。

  3. 实验设计:实验包括三个阶段的评估:分布内(ID)评估、分布外(OOD)评估和长尾疾病分布评估。通过对比其他领先LLM模型(如MEDITRON-70B、Clinical Camel-70B和Llama 3-70B)和GPT-4o,评估MedFound-DX-PA的诊断性能。

  4. 参数配置:使用BLOOM-176B作为基础模型,采用低秩适应(LoRA)和ZeRO++技术进行高效训练。模型推理使用vLLM62库,采用MED-Prompt和SC提示技术生成诊断理由。

结果与分析

  1. 常见疾病诊断性能:在ID设置下,MedFound-DX-PA的平均Top-3准确率为84.2%,显著优于其他模型。在OOD设置下,MedFound-DX-PA在所有专业中的表现均显著优于基线模型。

  2. 罕见疾病诊断性能:在零样本学习设置下,MedFound-DX-PA在八个专业中的平均Top-3准确率为80.7%,显著优于其他LLM模型。长尾疾病分布评估显示,MedFound-DX-PA在超罕见疾病和罕见疾病中的表现均优于其他模型。

  3. 医生对比研究:在内分泌学和肺科医生的对比研究中,MedFound-DX-PA的诊断准确率分别为74.7%和72.6%,均优于初级和中级医生,但与高级医生相当。

  4. AI辅助诊断:在医生工作流程中,AI辅助诊断显著提高了初级和中级医生的诊断准确率,分别在肺科和内分泌学中提高了11.9%和4.4%。

总体结论

这篇论文提出的MedFound-DX-PA模型在常见疾病和罕见疾病的诊断中表现出色,显著优于现有的LLM模型和分类模型。通过自举策略和统一的偏好对齐框架,MedFound-DX-PA能够生成高质量的诊断理由,并与临床实践和标准保持一致。研究表明,LLM在医学诊断中具有巨大的潜力,可以作为医生的有力辅助工具,提高诊断的准确性和效率。未来的研究方向包括将LLM与多模态数据集成,以及进一步优化LLM模型以更好地适应个体医生。

论文评价

优点与创新

  1. 大规模预训练模型:MedFound是一个拥有1760亿参数的预训练语言模型,是目前最大的开源医疗语言模型,能够在多种医疗文本和真实世界临床记录上进行高效预训练。

  2. 自引导策略:通过自引导策略的链式思维(COT)微调,使语言模型能够自动生成诊断理由和推理过程,类似于医生专家。

  3. 统一偏好对齐框架:引入了一个统一的偏好对齐(PA)框架,结合了ICD-10诊断层次偏好和专家标注的有用性偏好,确保模型输出与临床要求和人类价值观一致。

  4. 全面的评估:进行了包括人工智能与医生比较、AI辅助研究和人类评估框架在内的综合评估,验证了语言模型在诊断中的临床适用性。

  5. 多场景表现优异:在常见疾病、罕见疾病的长尾分布以及外部验证场景中,MedFound-DX-PA均表现出色,特别是在罕见疾病的诊断上取得了显著进展。

  6. 生成诊断理由:模型能够生成详细的诊断理由,提高了医生的信任度,并使模型的输出更加透明。

不足与反思

  1. 数据隐私和安全:尽管使用了去标识化的电子健康记录(EHR)数据,但仍需进一步确保数据隐私和安全。

  2. 多模态数据集成:当前模型主要关注语言交互,未来工作将探索与视觉语言模型(VLMs)的集成,以支持更全面的诊断和多模态患者护理。

  3. 个性化诊断支持:未来的研究将专注于优化LLM模型,使其更好地适应个别医生,从而提高诊断支持的个性化程度。

  4. 人类-AI协作:需要进一步研究AI辅助对人类认知和观察性能的影响,以优化人类-AI协作。

关键问题及回答

问题1:MedFound-DX-PA模型在罕见疾病诊断中的表现如何?与其他模型相比有何优势?

在零样本学习设置下,MedFound-DX-PA在所有专科的平均准确率为80.7%,显著高于其他模型,如MEDITRON-70B(77.4%)、Llama 3-70B(77.4%)和GPT-4o(56.5%)。在长尾疾病分布中,MedFound-DX-PA在超罕见疾病(≤0.1%)和罕见疾病(0.1-1%)的平均准确率分别为87.4%和89.2%,也显著优于其他模型。这表明MedFound-DX-PA在处理罕见疾病时具有更强的适应性和诊断能力。

问题2:MedFound-DX-PA模型是如何通过自举策略链式思维(COT)微调来提高诊断推理能力的?

  1. 初步模型训练:使用预训练模型和少量手动标注的诊断理由种子集进行训练,生成初步的诊断理由。

  2. 生成数据集:基于初步模型的输出,为每个样本生成诊断理由,形成数据集。

  3. 提供真实诊断提示:将真实诊断作为提示,要求模型重新生成诊断理由,形成数据集。

  4. 重新训练模型:使用数据集重新训练模型,得到改进后的模型。

通过这一过程,MedFound-DX-PA能够自动生成高质量的诊断理由,从而增强其推理能力和诊断准确性。

问题3:MedFound-DX-PA模型的统一偏好对齐(PA)框架是如何确保其输出与临床实践和标准一致的?

  1. 诊断层次结构偏好:利用国际疾病分类(ICD)-10树的层次结构指导LLM,确保其生成与疾病分类标准一致。

  2. 帮助度评分:通过帮助度评分模型评估诊断理由的有用性,确保LLM的生成内容对诊断过程有帮助。具体步骤包括:

  • 偏好构建:利用ICD-10树的层次结构构建诊断层次结构偏好。

  • 偏好优化:通过直接偏好优化(DPO)算法,优化LLM的输出,使其与诊断层次结构偏好和帮助度评分一致。

通过这两个步骤,MedFound-DX-PA能够确保其输出不仅符合医学标准,而且对医生在实际诊断过程中有帮助。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值