你也能测! 简单扑克游戏, Deepseek 唯一全对, 13大模型PK

Deepseek R1与其他大模型逻辑推理能力对比评测

在人工智能的发展浪潮中,推理能力一直是衡量大模型实力的重要标准之一。最近,Deepseek 推出了其最新的推理模型 Deepseek R1,业内反响强烈。测试表明,这款大模型的表现已达到与 OpenAI o1 相当的水平,并在一些场景下超越了同类产品。为了验证这一点,我们通过一个经典的数学推理游戏——24点游戏,来对 Deepseek R1 与其他主流大模型的推理能力进行对比评测。

1. Deepseek R1 介绍

Deepseek R1 是 Deepseek 推出的第二代推理模型,基于大量强化学习(RL)训练并加入冷启动数据(Cold-start data)进行优化,解决了其前代模型 Deepseek R1-Zero 的一些问题,如无监督的强化学习可能导致的语言混合和可读性差等缺陷。Deepseek R1 在数学、编程及推理任务上展示了卓越的能力,与 OpenAI 的 o1 系列模型比肩,甚至在一些基准测试中超越了 OpenAI o1-mini。值得注意的是,Deepseek R1 还开源了多种不同大小的模型,包括从 Deepseek R1 精简的 Qwen 32B 模型,这一版本在多个基准测试中表现出色,达到了业界领先的水平。

在这里插入图片描述

2. 评测方法

为了全面评估 Deepseek R1 的逻辑推理能力,我们选择了一个经典的推理任务——24点游戏。这是一个纯粹依赖逻辑推理的数学游戏,不依赖于搜索或枚举解决方案,适合测试模型的推理思维能力。游戏的规则如下:

  1. 每局随机抽取四张扑克牌,可以重复使用。

  2. 仅允许使用加法(+)、减法(-)、乘法(×)、除法(÷)四种运算符。

  3. 每张牌必须使用且只能使用一次。

  4. 目标是通过这些运算使四张牌的计算结果等于24。

题目设置了两组数字进行测试:

  • 第一组:3, 6, 7, 5

  • 第二组:9, 1, 5, 4

2.1 测试标准

我们会测试以下几个方面:

  1. 每个模型在两组数字的24点游戏中是否能够正确计算出结果。

  2. 是否能够通过合理的逻辑推理得出结果,避免无意义的计算或错误解答。

  3. 模型的推理速度和输出的可解释性。

2.2 参考答案

在测试过程中,我们提供了这两组数字的标准答案:

  • 第一组:3, 6, 7, 5

  • 正确答案是:3×(6+(7−5))=24

  • 第二组:9, 1, 5, 4

  • 正确答案是:(9−4)×5−1=24

3. 评测结果

在我们的测试中 Deepseek R1 是唯一两道题都答对了的大模型。土豆, Gemini 2.0 Flash Thinking Experimental, 智谱Zero推理模型答对了第一题,但是第二题答错了。其他大模型第一题就错了。

3.1 详细结果

3.2 测后感想

其实我们考了 Deepseek R1 3道题,它全都答对了。第1道题用了10秒,第2道题其实挺简单的,Deepseek R1 的推理时间有点长用了20秒。

前5名都是海外大模型,但是只有谷歌的推理模型做对了第1题,而国产大模型有4家都做对了。国产大模型还不错呢。智谱推理第2题直接说结论是无解,这个让我有点惊讶。

由于 ChatGPT o1 没有公开的测试环境,很遗憾这次大比拼里没有测试它。

许多其他大模型在第一题中就给出了错误的答案,这也证明了推理任务对大模型的挑战性。

4. 结论

从本次评测结果来看,Deepseek R1 在逻辑推理任务中表现优异,能够正确解决两道24点游戏题目,证明了其在推理能力上的强大优势。相比之下,其他一些主流大模型虽然在部分题目上能够给出正确答案,但在另一题目上往往出现错误,这显示出它们在逻辑推理能力上的局限性。

Deepseek R1 的成功得益于其强化学习(RL)与冷启动数据的结合,使得模型能够在推理任务中展现出更为精准和稳定的表现。未来,随着 Deepseek R1 的进一步优化和迭代,预计其在更多推理任务中的表现将更加出色,也可能成为推理任务领域的新标杆。

总结:

Deepseek R1 无疑是目前推理领域中最强大的模型之一,在与其他大模型的对比中显示出其卓越的推理能力,值得技术开发者和研究者关注。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值