题目来自牛客网leetcode
1.题目
给定一个字符串S和一个字符串T,计算S中与T相同的子序列的个数。 字符串的子序列是由原始字符串形成的新字符串,通过删除字符中的一些(可以不是)而不干扰其余字符的相对位置。 (即“ACE”是“ABCDE”的子序列,而“AEC”不是)。 这里是一个例子: S =“rabbbit”,T =“rabbit” 返回3。
2.分析过程
这道题可以通过动态规划方法求解。 假设S的长度为m,T的长度为n; 利用前面总结动态规划方法的步骤: (1) 定义一个二维数组int [][] dp=new int[m+1][n+1],其中dp[i][j]表示dp[i][j]表示S中的前i个字符组成的子串与T中的前j个字符组成的子串相比的结果; (2)状态转移方程: 如果S的第i个字符等于T的第j个字符,则dp[i][j]=dp[i-1][j]+dp[i-1][j-1] 如果S的第i个字符不等于T的第j个字符,则dp[i][j]=dp[i-1][j] (3)根据边界条件初始化dp数组 dp[0...m][0]=1,dp[0][1...n]=0,dp[i][j]=0 (当j>i时成立)
3.代码实现
public class Solution {
public int numDistinct(String S, String T) {
if(S==null || T==null || S.length()<T.length()) return 0;
int m=S.length();
int n=T.length();
int [][] dp=new int[m+1][n+1];//dp[i][j]表示S中的前i个字符组成的子串与T中的前j个字符组成的子串相比的结果
//初始化dp数组
for(int i=0;i<m+1;i++){
dp[i][0]=1;
}
for(int i=1;i<m+1;i++){
if(S.charAt(i-1)==T.charAt(0))
dp[i][1]+=dp[i-1][1]+1;
else
dp[i][1]=dp[i-1][1];
}
for(int i=1;i<m+1;i++){
for(int j=1;j<=i && j<n+1;j++){
if(S.charAt(i-1)==T.charAt(j-1)){
dp[i][j]=dp[i-1][j]+dp[i-1][j-1];
}else{
dp[i][j]=dp[i-1][j];
}
}
}
return dp[m][n];
}
}