distinct-subsequences(不同子序列)

题目来自牛客网leetcode

1.题目

    给定一个字符串S和一个字符串T,计算S中与T相同的子序列的个数。
字符串的子序列是由原始字符串形成的新字符串,通过删除字符中的一些(可以不是)而不干扰其余字符的相对位置。 (即“ACE”是“ABCDE”的子序列,而“AEC”不是)。
这里是一个例子:
S =“rabbbit”,T =“rabbit”
返回3。

2.分析过程

    这道题可以通过动态规划方法求解。
    假设S的长度为m,T的长度为n;
    利用前面总结动态规划方法的步骤:
   (1) 定义一个二维数组int [][] dp=new int[m+1][n+1],其中dp[i][j]表示dp[i][j]表示S中的前i个字符组成的子串与T中的前j个字符组成的子串相比的结果;
   (2)状态转移方程:
     如果S的第i个字符等于T的第j个字符,则dp[i][j]=dp[i-1][j]+dp[i-1][j-1]
     如果S的第i个字符不等于T的第j个字符,则dp[i][j]=dp[i-1][j]
   (3)根据边界条件初始化dp数组
     dp[0...m][0]=1,dp[0][1...n]=0,dp[i][j]=0 (当j>i时成立)
    

3.代码实现

public class Solution {

    public int numDistinct(String S, String T) {
        if(S==null || T==null || S.length()<T.length()) return 0;
        int m=S.length();
        int n=T.length();
        int [][] dp=new int[m+1][n+1];//dp[i][j]表示S中的前i个字符组成的子串与T中的前j个字符组成的子串相比的结果

        //初始化dp数组
        for(int i=0;i<m+1;i++){
            dp[i][0]=1;
        }
        for(int i=1;i<m+1;i++){
            if(S.charAt(i-1)==T.charAt(0))
                dp[i][1]+=dp[i-1][1]+1;
            else
                dp[i][1]=dp[i-1][1];
        }

        for(int i=1;i<m+1;i++){
            for(int j=1;j<=i && j<n+1;j++){
                if(S.charAt(i-1)==T.charAt(j-1)){
                    dp[i][j]=dp[i-1][j]+dp[i-1][j-1];
                }else{
                    dp[i][j]=dp[i-1][j];
                }
            }
        }

        return dp[m][n];
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值