一,问题描述
1,给出两个字符串S和T, 计算S中T的不同的子序列的个数,(S>=T)。一个字符串的子序列是由一个原始字符串通过删除一些字符(也可以不删除),但是不改变剩下字母的相对顺序的一个新字符串。如,ACE是ABCDE的一个子序列,但是AEC不是一个子序列的。
2,例如:
S=rabbbit, T=rabbit
返回: 3
3,解题思路:
这是一道用动态规划解答的题。DP很经典
dp[i][j]表示字符串T的从0开始长度为i的子串和字符串S的从0开始长度为j的子串的匹配总个数。(s的长度时大于等于t的,否则输出为0)
设置一个dp[t.length+1][s.length+1]
初始化情况:
首先dp[0][0]=1;表示空的字符串t和空的字符串s是匹配的。
然后dp[0][1….s.length]=1;表示的是空的字符串t,与不为空的字符串s是相互匹配的,而且匹配的个数为1。
dp[1…..t.length][0]=0; 表示不为空的字符串t, 空的字符串s,他们匹配的总个数为0;
当t[i-1]==s[j-1]相同时: dp[i][j]=dp[i-1][j-1]+dp[i][j-1]
当t[i-1]!=s[j-1]不相同: dp[i][j]=dp[i][j-1]。
最后输出dp[t.length][s.length]。
二,AC了的程序(用java实现的)
import java.util.*;
public class Test2{ //leetcode 115
public int numDistinct(String s,String t)
{
int len1=t.length(); //字符串t的长度
int len2=s.length(); //字符串s的长度
int [][]dp=new int[len1+1][len2+1]; //dp[i][j]表示从t的从0开始为i的子串和s的从0开始为j的子串的匹配个数。
for(int i=0;i<len2+1;i++) //首先i对于的就是字符串t里面的索引
{
dp[0][i]=1;
}
for(int i=1;i<len1+1;i++) //首先从第二行开始计算,第一行中第一个数总是为1的。因为两个空字符串是匹配的。
{
dp[i][0]=0;
}
for(int i=1;i<=len1;i++) //动态规划
{
for(int j=1;j<=len2;j++) //首先j对于的就是字符串s里面的索引。(s>t)
{
if(t.charAt(i-1)!=s.charAt(j-1))
{
dp[i][j]=dp[i][j-1];
}
else
{
dp[i][j]=dp[i-1][j-1]+dp[i][j-1];
}
}
}
return dp[len1][len2];
}
public static void main(String []args)
{
Test2 test=new Test2();
Scanner scan=new Scanner(System.in);
String s=scan.next();
String t=scan.next();
int num=test.numDistinct(s,t);
System.out.println("总共的方案: "+num);
}
}
运行结果:
三,总结:
这是一道典型的动态规划题目,掌握了dp。